A Report Prepared for:

Lawrence Berkeley National Laboratory
One Cyclotron Road
Berkeley, California 94720

Attention: Mr. Kirk Haley
Building 90H

PRELIMINARY
GEOTECHNICAL INVESTIGATION REPORT
COMPUTATION RESEARCH AND
THEORY BUILDING
LAWRENCE BERKELEY NATIONAL
LABORATORY
BERKELEY, CALIFORNIA

Kleinfelder Job No: 74911

Reviewed By:

Mark H. Stanley, G.E. 2397
Geotechnical Engineer

Richard Yahn, GE
Geotechnical Engineer

KLEINFELDER WEST, INC
2240 Northpoint Parkway
Santa Rosa, California 95407
(707) 571-1883

June 29, 2007

Copyright 2007 Kleinfelder, Inc.
All Rights Reserved

UNAUTHORIZED USE OR COPYING OF THIS DOCUMENT IS STRICTLY PROHIBITED BY ANYONE OTHER THAN THE CLIENT FOR THE SPECIFIC PROJECT.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 Project Description</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Purpose and Scope of Services</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Authorization</td>
<td>3</td>
</tr>
<tr>
<td>2.0 FIELD INVESTIGATION</td>
<td></td>
</tr>
<tr>
<td>2.1 Subsurface Exploration</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Laboratory Testing</td>
<td>5</td>
</tr>
<tr>
<td>2.3 Reports By Others</td>
<td>5</td>
</tr>
<tr>
<td>3.0 SITE CONDITIONS</td>
<td></td>
</tr>
<tr>
<td>3.1 Regional Geology</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Local Geology</td>
<td>7</td>
</tr>
<tr>
<td>3.3 Faulting and Seismicity</td>
<td>8</td>
</tr>
<tr>
<td>3.4 Surface Conditions</td>
<td>9</td>
</tr>
<tr>
<td>3.5 Subsurface Conditions</td>
<td>9</td>
</tr>
<tr>
<td>3.6 Groundwater</td>
<td>11</td>
</tr>
<tr>
<td>4.0 DISCUSSION AND CONCLUSIONS</td>
<td></td>
</tr>
<tr>
<td>4.1 General</td>
<td>12</td>
</tr>
<tr>
<td>4.2 Site Seismic Characterization</td>
<td>12</td>
</tr>
<tr>
<td>4.3 Geologic Hazards</td>
<td>14</td>
</tr>
<tr>
<td>4.4 Design Considerations</td>
<td>14</td>
</tr>
<tr>
<td>4.4.1 Undocumented Fill and Colluvium</td>
<td>14</td>
</tr>
<tr>
<td>4.4.2 Foundation Support</td>
<td>15</td>
</tr>
<tr>
<td>4.4.3 Excavation Support</td>
<td>16</td>
</tr>
<tr>
<td>4.4.4 Groundwater</td>
<td>17</td>
</tr>
<tr>
<td>4.5 Construction Considerations</td>
<td>17</td>
</tr>
<tr>
<td>4.5.1 Excavatability</td>
<td>17</td>
</tr>
<tr>
<td>4.5.2 Temporary Excavations</td>
<td>17</td>
</tr>
<tr>
<td>4.5.3 Temporary Slopes</td>
<td>18</td>
</tr>
<tr>
<td>4.5.4 Drilled Piers</td>
<td>18</td>
</tr>
<tr>
<td>4.5.5 Groundwater Control</td>
<td>19</td>
</tr>
<tr>
<td>5.0 RECOMMENDATIONS</td>
<td></td>
</tr>
<tr>
<td>5.1 General</td>
<td>20</td>
</tr>
<tr>
<td>5.2 Site Preparation and Grading</td>
<td>20</td>
</tr>
<tr>
<td>5.2.1 Clearing and Site Preparation</td>
<td>20</td>
</tr>
<tr>
<td>5.2.2 Removal of Unsuitable Soils and Subgrade Preparation</td>
<td>21</td>
</tr>
<tr>
<td>5.2.3 Benching Into Native Soil</td>
<td>21</td>
</tr>
<tr>
<td>5.2.4 Structural Fill</td>
<td>21</td>
</tr>
<tr>
<td>5.2.5 Select Fill</td>
<td>22</td>
</tr>
<tr>
<td>5.2.6 Fill Placement</td>
<td>22</td>
</tr>
</tbody>
</table>
5.3 Temporary Excavation and Backfill ...24
5.4 Foundations ...24
 5.4.1 Spread Footing Design Criteria ..24
 5.4.2 Lateral Resistance ..25
 5.4.3 Drilled Pier Design Criteria ...26
5.5 Retaining Walls (15 Feet or Less in Height) ..27
5.6 Tie-Back Walls ...27
 5.6.1 Lateral Pressures ..28
 5.6.2 Rock Bolts/Tie-backs ..28
5.7 Wall Drainage ...29
5.8 Concrete Slabs-On-Grade ...29
5.9 Surface and Subsurface Drainage Control ..31

6.0 ADDITIONAL SERVICES AND LIMITATIONS ..33
 6.1 Additional Services ..33
 6.2 Limitations ...34

PLATES
 Plate 1 Site Location
 Plate 2 Site Plan
 Plate 3 Geologic Cross Section Profile A-A'
 Plate 4 Geologic Cross Section Profile B-B'
 Plate 5 Geologic Cross Section Profile C-C'
 Plate 6 Geologic Cross Section Profile D-D'

APPENDIX A
 A-1 Boring Log Legend
 A-2 Rock Description Criteria
 A-3 through A-5 Boring Logs
 A-6 Log of Test Pits TP-1 through TP-5
APPENDIX B

B-1 Plasticity Index Chart
B-2 Strength Test Data
B-3 Particle Size Analysis

APPENDIX C

Seismic Refraction Survey, Advanced Geologic Services, September 19, 2006

APPENDIX D

Technical Memorandum (Cut Slope Preliminary Design Summary), Kleinfelder – Bellevue, WA, September 21, 2006

APPENDIX E

Select Boring Logs – Previous Investigations by Others

APPENDIX F

Corrosion Test Report, Environmental Technical Services, September 29, 2006
1.0 INTRODUCTION

This report presents the results of our preliminary geotechnical investigation for the planned Computation Research and Theory Building (CRT) to be constructed within the Lawrence Berkeley National Laboratory (LBNL) facility in Berkeley, California (Site Location, Plate 1). The proposed structure will be constructed on the slope between Building 70A and the Blackberry Gate entrance kiosk located on Cyclotron Road (referenced herein as “site”). Work performed during this investigation was conducted in accordance with the tasks described in our proposal dated May 19, 2006. Kleinfelder also conducted a fault investigation for the project documented in a report titled “Fault Investigations, Computational Research and Theory Building, Lawrence Berkeley National Laboratory, Berkeley, California,” dated September 27, 2006.

1.1 PROJECT DESCRIPTION

The project consists of constructing a 50,000 square foot (footprint) computer facility building that may include up to 8 stories with associated parking and utilities. LBNL provided an architectural rendering (sketch) showing the proposed structure footprint on a conceptual site plan entitled “B70 West Site” (undated) and in subsequent untitled and undated sketches. The approximate footprint of the structure and associated improvements are shown on the Site Plan, Plate 2. At the time of this report, the actual limits and type of building construction have not been confirmed.
The building will be situated on the west-facing slope between building 70A and Cyclotron Road near the Blackberry Gate entrance kiosk. The sketches indicate that the building will be stepped up the hillside with the lowest level at approximately elevation 637 feet (LBNL Datum) and the upper entrance deck at elevation 760 feet. A parking area, approximately ½ acre in size, is planned north of the building site and will be entered from the drive to Buildings 50E and 50F off Cyclotron Road. A west-facing stairway to Cyclotron Road is planned between the building and parking area.

1.2 PURPOSE AND SCOPE OF SERVICES

The purpose of this investigation is to provide preliminary geotechnical recommendations for the design of the new building and retaining structures. The scope of this investigation included researching published data, evaluating site geologic conditions by drilling test borings, and analyzing field and laboratory data to address the following:

- Seismic design criteria in accordance with the 2006 International Building Code standards.
- Potential geologic hazards.
- Site preparation and excavation.
- Foundation type and design criteria for new structures.
- Slab-on-grade recommendations.
- Geotechnical drainage.

Two additional deep borings/rock cores were proposed within the slope near the lower edge of the building footprint. Drilling of these borings was postponed by LBNL. These and possibly additional borings should be conducted pending finalization of the actual building footprint and more specific determination of anticipated building loads. Once this information is better defined, the borings can be strategically located within the building envelope and a design level geotechnical report can be prepared.
1.3 AUTHORIZATION

This investigation was authorized by Ms. Laura Crosby in the LBNL subcontract agreement numbered 6805923, Modification Number 1.
2.0 FIELD INVESTIGATION

2.1 SUBSURFACE EXPLORATION

Our subsurface investigation comprised three phases; drilling geotechnical borings, excavating test pits, and using a seismic refraction survey. Our test pits were excavated on August 29, 2006, the borings were drilled on September 18, 2006, and a seismic refraction survey was conducted on August 31, 2006. Our subsurface investigation locations are shown on the Site Plan (Plate 2). The purpose of the investigation was to evaluate subsurface conditions for construction of the planned building, parking areas, and retaining walls; therefore, our explorations were advanced through surficial soils and into the underlying bedrock, where possible.

The test pits were excavated using a track-mounted excavator (Takeuchi - TB 145) equipped with a 30-inch-wide bucket. The test pits were excavated to depths ranging from 6 to 10½ feet below existing ground surface and were shored for safety. Our project geologist observed the excavation and test pits, and recorded the soil and bedrock conditions encountered.

Borings K-1, K-2, and K-3 were drilled with a truck-mounted Mobile B-53 power-auger drill utilizing 6-inch-diameter solid flight augers to depths ranging from 5½ feet to 30 feet. Our project geologist observed the drilling, logged the conditions encountered, and obtained samples for visual classification and laboratory testing. Samples of the soil were obtained using a 2.43-inch (inside diameter) sampler and a 1.42-inch (inside diameter) sampler driven with a 140-pound hammer dropped 30 inches. The blows required to drive the sampler were recorded and converted to equivalent Standard Penetration blow counts for correlation with empirical data.

The soils encountered are described in accordance with the Unified Soil Classification System (USCS) as presented on the Boring Log Legend, Plate A-1 in Appendix A. Bedrock has been classified in accordance with the Rock Description Criteria in Appendix A. Logs of the borings are presented on Plates A-3 through A-5 and the logs of the test pits are presented on Plate A-6 in Appendix A.
The seismic refraction survey was conducted by Advanced Geological Services (AGS). Their report is included as Appendix C. The location of the seismic survey lines are shown on Plate 2.

2.2 LABORATORY TESTING

Selected samples were tested to evaluate pertinent engineering and physical properties of the soils/rock encountered. The laboratory testing program evaluated the plasticity, strength, and particle size of the soil, and the soil derived from processing the fractured rock. Classifications made in the field were modified, as appropriate, based on the laboratory test results; classifications presented on the boring logs reflect modifications made as a result of laboratory tests. The results of the laboratory testing are presented in Appendix B and on the boring logs.

Routine corrosion testing was performed by Environmental Technical Services (ETS) of Petaluma, California on a sample of expected foundation bearing material collected from boring K-3, and their report is included in Appendix F. It should be noted that Kleinfelder does not practice corrosion engineering. As such, the corrosivity test results are presented for the preliminary use of our Client and their project team. Our review of comments contained in the corrosion report indicates that the soil tested has fair resistivity, low chloride and sulfate concentrations, is mildly acidic, and has mild redox so standard concrete mixes appear to be acceptable in soil. Type II cement is recommended by the testing laboratory due to the soil Redox levels. A corrosion specialist should be contacted to review these results and determine if additional testing is warranted.

2.3 REPORTS BY OTHERS

As part of our geotechnical investigation, we reviewed the geotechnical files retained at the LBNL campus for the CRT site and adjacent building sites. Information provided in these reports was utilized in our evaluation of surface and subsurface conditions. The reports reviewed include:

In addition to geotechnical investigation reports, we reviewed the “as-built” drawings for Building 50F, Building 70 and Building 70A.
3.0 SITE CONDITIONS

3.1 REGIONAL GEOLOGY

The site is located within the Coast Ranges Geomorphic Province of Northern California. The Coast Ranges Province is a geologically complex and seismically active region characterized by sub-parallel northwest-trending faults, mountain ranges, and valleys which are a reflection of the dominant northwest structural trend of the bedrock in this region. The oldest mapped bedrock unit within the Coast Ranges Province is the Franciscan Complex, a diverse group of igneous, sedimentary, and metamorphic rocks of Upper Jurassic to Cretaceous age (140 to 65 million years old). Since deposition, the bedrock materials have been subjected to faulting and folding. These rocks are part of a northwest-trending belt of material that lies along the east side of the San Andreas fault system. Locally, these older bedrock deposits are overlain by younger, Quaternary age (less than 2 million years old) marsh, alluvial, and colluvial deposits.

3.2 LOCAL GEOLOGY

The site and vicinity have been mapped by Graymer (2000, United States Geologic Survey – Miscellaneous Field Studies MF 2342) and Korbay (1982, Harding Lawson Associates, Geology of the Lawrence Berkeley Laboratory – HLA Job No. 2000, 135.01). The geologic maps prepared by these authors generally agree that the site is underlain by late Cretaceous sedimentary rocks. Graymer described the geology of the site area as “unnamed sedimentary rocks of the Great Valley Complex” that are characterized as “massive to distinctly bedded, biotite-bearing, brown-weathering, coarse- to fine-grained greywacke and lithic wacke, siltstone, and mudstone.”

The geologic map prepared by Korbay (1982) indicates the presence of a “Minor inactive fault” crossing the east corner of Building 70A. This fault is also mapped approximately 30 feet from the southwest corner of Building 70. Conversations with Mr. Steve Korbay revealed information regarding the nature of the fault zone. Mr. Korbay described the fault as a highly sheared zone
of gray shale that was exposed in the excavation for Building 50F. We have indicated zones of sheared shale on the cross sectional profiles (Plates 3, 4, 5 and 6). We have not identified a common trend or trace allowing us to connect the sheared shale to the fault mapped by Korbay. It is reasonable to assume that shear zones are present with many orientations and may not be laterally continuous. Depending on the final configuration of the CRT Building, the easternmost excavation for the building may encounter this fault zone.

3.3 FAULTING AND SEISMICITY

Evidence of active faulting was not observed in the trenches KT-1 or KT-2 (Plate 2). Results of our fault investigation are addressed in our September 27, 2006, Fault Investigation Report. The site, as well as the entire Northern California Coastal Region, is located within a seismically active portion of the state, dominated by the presence of the San Andreas fault system, which forms the boundary between two tectonic plates of the earth’s crust. At this boundary, the Pacific Plate (west of the fault) is moving north relative to the North American Plate (east of the fault). In the San Francisco Bay Area, this movement is distributed across a complex system of strike-slip, right-lateral, parallel, and sub-parallel faults which include the San Andreas, West Napa, Healdsburg/Rodgers Creek, Maacama, Concord-Green Valley, and Hayward among others.

The site is located within an Earthquake Fault Zone as defined by the California Geologic Survey (formerly California Division of Mines and Geology) in accordance with the Alquist–Priolo Earthquake Fault Zone Act of 1972. The Richmond, Oakland East, and Oakland West quadrangles (California Geological Survey (CGS), 1982, Earthquake Fault Zones, Richmond Oakland East and Oakland West Quadrangle) indicate the Hayward fault is located less than 1 kilometer to the west of the planned CRT site. Moderate to major earthquakes generated on the Hayward fault can be expected to cause strong ground shaking at the site. In addition, strong ground shaking can be expected from moderate to major earthquakes generated on other faults in the region such as the Concord-Green Valley fault (located 20 kilometers east of the site), the Calaveras fault (located 19.5 kilometers east of the site), the San Andreas fault (located 30 kilometers west of the site), and the Healdsburg-Rodgers Creek fault (located 26 kilometers
north of the site). A number of large earthquakes have occurred within this region in the historic past. Some of the significant nearby events are the 1989 Loma Prieta earthquake (M6.9), the 1906 San Francisco earthquake (M8+), the 1868 Hayward fault earthquake (M7), the 1838 San Francisco earthquake (M7+) and the 1836 Oakland earthquake (M6+). Future seismic events in this region can be expected to produce strong seismic ground shaking at this site. The intensity of future shaking will depend on the distance from the site to the earthquake focus, the magnitude of the earthquake, and the response of the underlying soil and bedrock.

3.4 SURFACE CONDITIONS

The site is bounded by Cyclotron Road on the west and Buildings 70 and 70A on the east. Building 50X was proposed to the north but has not been constructed. A significant drainage crosses the slope approximately 150 feet to the south of the site. Minor grading appears to have been performed in the area; however, there is no record of previous building structures on the site. A wooden staircase crosses the site and previous staircase alignments have utilized the graded flat areas as picnic areas. A service road supported by short retaining walls has been constructed below the elevated parking area west of 70A. The project area consists of west-facing slopes inclined at approximately 2H:1V (horizontal: vertical) to 4H:1V. Cutslopes as steep as 1.25H:1V are located along the eastside of Cyclotron Road below and west of the site. The cutslopes were performed during recent grading in late July 2006 as part of the Blackberry Gate Improvements project that included new cutslopes for additional pavement areas and a new gate kiosk. Evidence of slope instability within the cut slope or adjacent slopes was not observed on the surface.

3.5 SUBSURFACE CONDITIONS

Five test pits were excavated on the slope of the planned building area (see Plate 2). The test pits encountered thin topsoil over colluvial deposits. In TP-1 through TP-4 underlying the colluvial deposits, completely weathered bedrock over less weathered bedrock was encountered. TP-5 did not encounter bedrock by a depth of 10 feet, which was the depth limit based on the position of the excavator on the slope. The topsoil was described as sandy silt with gravel that, at the time of our investigation was dry, very stiff to hard, and slightly porous. The colluvium was gravelly,
sandy clay that was moist and hard. The bedrock was described as a siltstone that is completely
to moderately weathered, extremely weak to weak with very close fractures. The materials
observed in these test pits is very similar to the subsurface conditions encountered during our
fault trench investigation for the same project. However, moisture contents were dramatically
different. In fact, our fault trenches readily collected water while the soil in our test pits
appeared mostly dry.

In test pits TP-3 and TP-4, and in our fault trenches, we encountered a thin gray clay seam at the
base of the completely weathered bedrock.

Borings K-1 and K-2 were drilled in the service road area below the elevated parking west of
Building 70A (see Plate 2). Boring K-1 encountered gravelly sandy clay (colluvium) that was
moist and very stiff during our drilling below the pavement section. The gravelly sandy clay was
observed in the boring to a depth of approximately 7 feet, where we encountered siltstone. The
siltstone was described as completely weathered, very closely fractured, and very weak. At
approximately 18 feet, we encountered shale that was highly weathered, very closely fractured,
weak, and thinly bedded. Our boring encountered sandstone at approximately 24½ feet. The
sandstone was highly weathered, very closely fractured, and weak. Drilling became very
difficult at approximately 26 feet and the boring was terminated at approximately 27 feet.

Boring K-2 encountered clayey, sandy gravel below the pavement section (fill) to a depth of
approximately 5½ feet. At approximately 5½ feet our boring encountered concrete, at which
time we contacted Mr. Jim Mankini of LBNL regarding utilities. After review of the utility
plans, it was suspected that the concrete is the top of a duct bank for communication lines and
the boring was abandoned.

K-3 was drilled in the parking area west of Building 70 as seen on Plate 2. Boring K-3
encountered interbedded siltstone and sandstone below the pavement section to a depth of
approximately 27 feet. The siltstone and sandstone were described as completely to moderately
weathered, very closely fractured, and very weak. At approximately 27 feet, our boring
encountered shale that was very closely fractured and very weak.
A dormant landslide was encountered in trenches KT-1 and KT-2; these trenches were excavated as part of our 2006 fault investigation (located in the vicinity of the southwest corner of the proposed building footprint [Plate 2]). The landslide is located approximately 10 feet (vertically) below the ground surface and was a source of seepage.

3.6 GROUNDWATER

Groundwater was encountered in boring K-3 at a depth of approximately 27 feet at the time of drilling. The groundwater level was not allowed to stabilize and groundwater levels should be expected to rise significantly. Groundwater was encountered at similar depths in borings drilled for Building 50A (HLA 1965) and Building 70 (Dames and Moore 1959). The fault zone mapped by Korbay (1982) discussed above, is a possible aquatard damming groundwater at various depths east of the fault. It should be understood that seepage and groundwater levels can vary seasonally and could rise and fall several feet annually; however, we do not expect that groundwater will enter typical shallow excavations.
4.0 DISCUSSION AND CONCLUSIONS

4.1 GENERAL

Based on the results of our field exploration, laboratory testing, review of reports by others, and engineering analyses; we conclude that, from a geotechnical engineering standpoint, the construction of the building and related improvements are feasible. The most significant geotechnical engineering factors that must be considered in design and construction of the project are foundation support, excavation support, lateral earth pressures for retaining walls, the presence of undocumented fill, and the potential for strong seismic shaking generated from earthquakes on active faults in the region.

4.2 SITE SEISMIC CHARACTERIZATION

The site is not located within an Earthquake Fault Zone as defined by the California Division of Mines and Geology. However, because of the proximity to the Hayward, Concord-Green Valley, Calaveras, and San Andreas faults, the site is expected to be subjected to very strong ground shaking during a moderate to major earthquake on these or other active faults in the area. On the basis of current technology as well as historical evidence, it is reasonable to assume that, during the life of the proposed development, it will be subjected to at least one moderate to severe earthquake that could produce potentially damaging ground shaking at the site. Further, it is anticipated that the subject site will periodically experience small to moderate magnitude earthquakes. Therefore, the proposed structure should be designed to withstand the effects of the anticipated strong ground shaking.

Field and laboratory test data indicate that the site and proximity can be assigned a Site Class C based on average soil properties in the top 100 feet and Table 1613.5.2 of the 2006 International Building Code (IBC). Site Class C is defined as a profile consisting of very dense soil and soft rock with a shear wave velocity between 1,200 and 2,500 feet per second, a Standard Penetration Test, N (blows/foot), of greater than 50 and un-drained shear strength of greater than 2,000
pounds per square foot. The seismic design criteria are based upon the guidelines in ASCE 7 which is the basis of the International Building Code (IBC 2006). ASCE 7 is based upon a maximum considered earthquake ground motion, defined as the motion caused by an event with a 2% probability of exceedance within a 50 year period (recurrence interval of approximately 2,500 years). We have used the “Ground Motion Parameter Calculator” provided on the United States Geologic Survey (USGS) web site (http://earthquake.usgs.gov/research/hazmaps/design/) to calculate the site specific parameters based upon the site coordinates (longitude and latitude). Site coordinates used for this site are N37.87593, W122.25262. The resulting seismic design factors are summarized below.

SUMMARY OF SEISMIC DESIGN FACTORS - ASCE 7

<table>
<thead>
<tr>
<th>Site Class</th>
<th>Fa</th>
<th>Fv</th>
<th>Ss</th>
<th>S₁</th>
<th>S₂₅</th>
<th>S₃₂₅</th>
<th>S₆₁</th>
<th>S₁₀₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.0</td>
<td>1.3</td>
<td>2.023</td>
<td>0.791</td>
<td>2.023</td>
<td>1.028</td>
<td>1.349</td>
<td>0.685</td>
</tr>
</tbody>
</table>

The factors are defined as follows:

Fa – Short Period Coefficient to modify 0.2 second period of mapped spectral response accelerations for Site Class other than Site Class B.

Fv – Long Period Coefficient modify 1.0 second period of mapped spectral response accelerations for Site Class other than Site Class B.

S₁ – Mapped maximum considered earthquake spectral response acceleration, 5 percent damped, at 0.2-second period for Site Class B (in %g).

S₂₅ – Mapped maximum considered earthquake spectral response acceleration, 5 percent damped, at 0.2-second period for Site Class B (in %g).

S₃₂₅ – Maximum considered earthquake spectral response acceleration, 5 percent damped, at 0.2-second for Site Class effects (in %g).

S₆₁ – Mapped maximum considered earthquake spectral response acceleration, 5 percent damped, at 1.0-second period for Site Class effects (in %g).

S₁₀₂ – Design earthquake spectral response acceleration, 5 percent damped, at 0.2-second period (in %g).

S₁₀₃ – Design earthquake spectral response acceleration, 5 percent damped, at 1.0-second period (in %g).
We understand that the building will have an Occupancy Category of III or IV per Table 1604.5 of the IBC. Since S_1 is greater than 0.75, Section 1613.5.6 of the IBC requires that the structure be assigned a Seismic Design Category E for Occupancy Category III and Seismic Design Category F for Occupancy Category IV.

4.3 GEOLOGIC HAZARDS

The site will be founded on a hillside comprised of fractured bedrock. Therefore, the risk for the occurrence of liquefaction, seismically induced settlement, or lurching is negligible. A dormant landslide is located in the northwest corner of the building footprint. The stability of the dormant landslide is unknown. The dormant landslide is relatively shallow and should be completely removed if the finalized building footprint is located in this area. New foundations should also bear in undisturbed bedrock located below the dormant landslide.

The site is underlain by shale and siltstone that could have moderate expansion potential when used as fill. Re-use of excavated materials as structural fill should be tested and approved in writing by the Geotechnical Engineer.

4.4 DESIGN CONSIDERATIONS

4.4.1 Undocumented Fill and Colluvium

Our borings indicate that upper portions of the site contain unknown thicknesses of fill. We have not been able to locate any documentation regarding the placement and compaction of this fill. Although the fill that we encountered in the borings appeared to be well consolidated, undocumented fills can contain deleterious conditions including, but not limited to, wood, topsoil, debris, voids, and other materials that could result in future settlements or foundation instability. Foundations supported on undocumented fill will be subject to risk of undetected conditions. To avoid such risks, it would be necessary to either remove the fill and reinstall it in a controlled manner or use deep foundations that derive their support below the fill soils. For our geotechnical report, we have assumed that the fill will be removed and replaced as engineered
fill beneath the building pad. For the purposes of this report, the building pad is defined as extending 5 feet beyond the structure footprint.

The site is blanketed by a layer of colluvial soils that is not suitable for support of structures. The colluvial soils should be excavated for their entire depth and, where required, replaced with engineered fill properly keyed and benched into the underlying bedrock. Recommendations for construction of engineered fills are provided in Section 5.0 of this report.

4.4.2 Foundation Support

Details regarding the specific vertical configuration of the proposed structure are not currently available. However, we anticipate that the structure will be stepped up the hillside. Plates 3 through 6 present cross sections showing the interpreted configuration of the proposed excavations based upon the conceptual project renderings.

The selection of the appropriate foundation system will depend on the vertical configuration of the structure. To limit differential settlements, care must be taken so that the structure is supported on footings founded in competent bedrock. Temporary and permanent retaining structures will be required to support the proposed vertical cuts of up to 40 feet; recommendations are presented in the following section. The structure can be supported on spread footing foundations or drilled shafts (piers) bearing in undisturbed bedrock. Review of as-built drawings of adjacent structures indicates that structures are generally supported on isolated column and continuous perimeter foundations, except adjacent to existing slopes where the foundations are supported by drilled pier foundations. Building 50F is supported on drilled pier foundations to accommodate the lower parking level. The underlying bedrock is a highly fractured, highly weathered shale, siltstone, and sandstone. As a whole, the rock mass will provide adequate support for the structure. However, shear zones are present throughout the rock mass and an inactive fault (shear zone) has been mapped as crossing the site (Korbay, 1982). We understand that the fault was observed in the excavation of Building 50F (Korbay, personal communication). Although the fault was observed to be less than 3-feet-thick, it was also observed to be highly sheared and the source of a significant amount of seepage. We further judge that the CRT building can be supported on a combination drilled pier and spread footing
foundation. Special considerations may be required where weak shear zones are encountered. Recommendations for design of spread footing and drilled shaft foundations are provided in Section 5.0 of this report.

4.4.3 Excavation Support

Open cutting of deep excavations for the entire project does not appear feasible based upon the current project configuration. Therefore, the deep excavations will need to be shored. Due to the fractured nature of the bedrock, a soldier beam and lagging wall incorporating tie-back rock anchors for lateral support will be required. Alternatively, a tied-back shotcrete shoring system that incorporates tie-back anchors may be feasible. Either system will require top down construction methodologies. The shoring system should be designed by a specialty Contractor experienced in the design, construction, and maintenance of the selected shoring system. We evaluated to rock quality and conducted stability analysis for the proposed 43-foot-tall cut slope; this analysis is described in greater detail in Appendix D. We utilized the computer programs, RocPlane V. 2.0 and Swedge V.4.0 by Rocscience® to complete the stability analyses on the potential wedge and planar-type failures. We assumed a cohesion of zero and a friction angle of 30 degrees for the strength of the rock. We assumed a slope height of 43 feet based on the cross-section of the excavation. Based upon our analysis, the model indicates a rectangular pressure distribution over the height of the upper cut slope (43 feet) of 1,200 pounds per square foot (psf). We also estimated the pressure based on a standard triangular pressure distribution. Based on our calculations, the equivalent fluid pressure is 50H pounds per cubic foot (pcf), where H is the slope height. This analysis does not include any surcharge pressure from adjacent structures or proposed new foundations which would impose additional pressure on portions of the wall. We can assist in evaluating the affects of these additional pressures on cut slope stability if needed.

As currently proposed, the excavations will be located immediately adjacent to Building 70A (see Plate 3). Deep excavation could result in settlement of the adjacent ground and underpinning of existing foundations may be required. Recommendations for underpinning foundations are beyond the scope of this report but should be developed as part of a final design report.
4.4.4 Groundwater

We judge that groundwater seepage will be encountered in the excavations. The Building 50 addition included an extensive drainage gallery to control groundwater. We recommend that observation wells be installed as part of additional investigations to develop a design groundwater level elevation for the project. As previously discussed, the site is crossed by a shear zone/fault. Based upon our review of available data and our experience on the LBNL site, the groundwater level on the east side of the fault may be higher than the west side. It is also unknown how the drainage gallery for the Building 50 addition may have affected the groundwater levels as represented in past geotechnical studies and groundwater levels could be lower than indicated in the historic geotechnical data.

4.5 CONSTRUCTION CONSIDERATIONS

4.5.1 Excavatability

The site is underlain by weathered, highly fractured bedrock. Geophysical surveys conducted for this investigation and immediately north of the site indicate that the bedrock underlying the site has a shear wave velocity of between about 3,000 feet-per-second and 5,000 feet per second within the proposed depth of excavation. We judge that the excavations can be performed using conventional excavation equipment including a D8 dozer with a single ripper and large excavators having a bucket equipped with rock teeth. Locally, harder/stronger zones of bedrock could be encountered, especially at depth. The use of hoe rams should be anticipated in harder bedrock zones; the need for blasting is not anticipated.

4.5.2 Temporary Excavations

All excavations or cuts greater than 5 feet should be shored or sloped for safety in accordance with Occupational Safety and Health Administration (OSHA) standards. The design and maintenance of all necessary shoring, underpinning, and temporary excavation slopes should be the responsibility of the Contractor unless the retaining structure will be part of the permanent structure.
4.5.3 Temporary Slopes

The design and maintenance of temporary slopes is generally considered to be the responsibility of the Contractor. The Contractor should be familiar with applicable local, state, and federal regulations, including the current OSHA Excavation and Trench Safety Standards. In no case should slope height, inclination, and excavation depth exceed those specified in local, state, or federal safety regulations. Specifically, the Contractor should be familiar with the current Cal/OSHA regulations as described in California Code of Regulations, Title 8.

The soil conditions, as encountered in our investigation, vary across the site. The majority of the near surface soils are stiff clays/silts and clay/silt fill that may be considered to be Type “B” under OSHA regulations. The Contractor should verify soil conditions throughout the proposed limits of construction.

The Contractor’s “responsible person,” as defined in 29 CFR Part 1926, should evaluate the soil exposed in the excavations as part of the Contractor’s safety procedures. The Contractor’s responsible person should establish a minimum lateral distance from the crest of the slope for all vehicles, equipment, and spoil piles. Likewise, the Contractor’s responsible person should establish protective measures for exposed slope faces. We recommend that the Contractor, or his specialty subcontractor, design temporary construction slopes to conform to OSHA’s “Guidelines for Excavations and Temporary Sloping.” The temporary slope inclination should be determined by the Contractor or responsible subcontractor based on the soil conditions exposed at the time of construction. If an excavation, including trenches, is extended to a depth of more than twenty (20) feet, it will be necessary to have the side slopes designed by a Civil Engineer registered in the State of California.

4.5.4 Drilled Piers

Drilled piers will be drilled almost entirely within the underlying fractured rock. Hard drilling conditions should be anticipated in the bedrock, especially at depths greater than 30 feet. The bottoms of pier excavations should be relatively free of loose cuttings or slough prior to placing reinforcing steel and concrete. Standing water, if present, should be pumped from the
excavations prior to placing the concrete. We recommend that the Contractor review the boring logs prior to establishing a method of drilling the piers. Care must be taken to support the pier holes in the underlying fractured bedrock. We recommend that Kleinfelder observe the excavation of the piers to check that they are founded in suitable materials and constructed in accordance with the recommendations presented in this report.

4.5.5 Groundwater Control

Groundwater was encountered during our investigation in boring K-3 at a depth of 27 feet. Based upon review of other available geotechnical reports and the groundwater encountered in Boring K-3, we judge that groundwater/seepage zones will generally be encountered within the proposed deep excavations. It should be the Contractor's responsibility to monitor the groundwater elevation and control groundwater during construction.
5.0 RECOMMENDATIONS

5.1 GENERAL

In developing the following recommendations, we understand that specific details regarding the configuration of the hillside structure have not been determined. However, we understand that the structure will be excavated into the slope and, as such, key geotechnical considerations include 1) temporary and permanent support of excavations, 2) providing underpinning or other means of support for adjacent structures, 3) groundwater control, 4) placement of fills on slopes (if required), and 5) strong ground shaking. These and other considerations are discussed in the following sections.

5.2 SITE PREPARATION AND GRADING

5.2.1 Clearing and Site Preparation

The site should be cleared of existing structures and their foundations. Existing and abandoned utilities should also be removed or properly abandoned. Voids created by removal of existing structure foundations and utilities located below the depth of proposed grading should be backfilled with material meeting the requirements for structural (engineered) fill placed in accordance with recommendations for fill placement (Section 5.2.5).

The site should then be stripped of vegetation and organic or construction debris before grading commences. We anticipate that the stripping operation will require the removal of 2 to 3 inches of topsoil in most areas. Deeper stripping or grubbing will be required where concentrations or pockets of organic-laden soil, tree root balls, or old fills are encountered. The stripped, organic-rich material may be stockpiled and used for future landscaping purposes; however, this material should not be used as engineered fill.
5.2.2 Removal of Unsuitable Soils and Subgrade Preparation

Undocumented fills and unstable native soils should be removed for their entire depth and properly moisture conditioned and compacted as engineered fill. A Kleinfelder representative should be on-site to observe fill removal. We expect that grading will include the excavations for removing the undocumented fill, replacement with engineered fill, and minor site preparation for sidewalks and pavement approaches. In areas to receive fill, the soil should be scarified at least 6 inches deep. The soil should then be moisture conditioned to near optimum or slightly above optimum moisture content and compacted to at least 90 percent of the maximum dry density as described in ASTM D-1557. If areas appear to be yielding and/or saturated, deeper recompaction may be required, as determined by Kleinfelder.

5.2.3 Benching Into Native Soil

On slopes inclined 6H:1V or steeper, structural fills should be benched into the native soil. Benches cut for the construction of the fills should be at least 5-feet-wide and a maximum of 5-feet-high unless supported by shoring. Bench back slopes should be inclined no steeper than 0.75H:1V or as required by the State of California Construction Safety Orders. Care should be taken to adequately compact the fill against the exposed bedrock. The upper 8 inches of the exposed surface should be scarified, moisture conditioned, and compacted to 90 percent relative compaction (ASTM D1557) prior to placement of structural fill.

5.2.4 Structural Fill

On-site soils that are free of organic matter and do not contain rocks over 6 inches in diameter will generally be satisfactory for re-use as general structural fill. However, on-site expansive soils (typically boring log classification symbols CH and CL with plasticity indices greater than 15 percent) should not be used as structural fill. Structural fill should meet the following gradation requirements:

<table>
<thead>
<tr>
<th>Sieve Analysis</th>
<th>Percent Passing</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 inch</td>
<td>100</td>
</tr>
<tr>
<td>4 inch</td>
<td>85-100</td>
</tr>
<tr>
<td>No. 200</td>
<td>30-50</td>
</tr>
</tbody>
</table>
Additional processing may be required to break large rock fragments to conform to the above specified gradation. Processing may entail track-walking of rock fill materials either in the fill area or on a processing pad to breakdown large rock fragments with the oversize fraction being disposed of off-site.

5.2.5 Select fill

Imported or on-site select fill should be of low expansion potential and free of organic matter, and should conform, in general, to the following requirements:

- Plasticity Index: less than 15%
- Liquid Limit: less than 40%
- Percent Soil Passing #200 Sieve: between 15% and 60%
- Maximum Aggregate Size: 4 inches

5.2.6 Fill Placement

Fill should be spread in thin lifts, moisture conditioned to near optimum moisture content, and compacted to the relative compaction specifications presented below. Fill (or cut) subgrade soils should be finished to present smooth, unyielding surfaces. Subgrade soils should be maintained at their moist or above optimum moisture contents and be free of shrinkage cracks until covered by permanent construction. A summary of our compaction requirements is presented in the following Table 1.
TABLE 1
SUMMARY OF COMPACTION REQUIREMENTS

<table>
<thead>
<tr>
<th>Area</th>
<th>Compaction Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural and Select</td>
<td>In lifts, a maximum of 8 inches loose thickness, compact to a minimum of 90 percent relative compaction at or within 2 percent of the optimum moisture content for select (non-expansive) fill.</td>
</tr>
<tr>
<td>Engineered Fill</td>
<td></td>
</tr>
<tr>
<td>Trenches</td>
<td>In lifts, a maximum of 8 inches loose thickness, compact to at least 90 percent relative compaction at or within 2 percent of the optimum moisture content for select, non-expansive fill.</td>
</tr>
<tr>
<td>Parking and Access Driveway</td>
<td>Compact the top 6 inches of subgrade soil to at least 95 percent relative compaction at or within 2 percent of optimum moisture content for select (non-expansive) fill. Soils should be maintained at their moist or above optimum moisture contents until covered by permanent construction.</td>
</tr>
<tr>
<td>Concrete Slab-On-Grade</td>
<td>Compact the top 6 inches of select subgrade soil to at least 90 percent relative compaction at or within 2 percent of the optimum moisture content.</td>
</tr>
<tr>
<td>Exterior Flatwork</td>
<td>Compact the top 6 inches of select subgrade soils to at least 90 percent relative compaction at or within 2 percent of the optimum moisture content for select (non-expansive) fill.</td>
</tr>
</tbody>
</table>

When grading is performed in the winter, spring, or early summer, there is a risk that the site soils/weathered rock may be saturated and too soft to support construction equipment. Normally suitable fill material may be too wet to properly compact and excavation bottoms can become unstable. Such soil/weathered rock conditions could be mitigated by over-excavation and backfilling with more expensive, imported fill and/or other means.

Permanent cut and fill slopes should be constructed no steeper than 2.5H:1V. If steeper slopes are needed, soil reinforcing will be required. To limit erosion and the transport of sediment into local drainage systems, erosion protection measures (such as hydrotechnical and/or straw mats to be determined by the project Civil Engineer) should be installed in graded areas in accordance with state and local government ordinances.
Site preparation and grading operations should be observed by a representative of Kleinfelder. This will allow us to check whether unforeseen or detrimental materials are exposed by the construction equipment and to modify our recommendations, if necessary.

5.3 TEMPORARY EXCAVATION AND BACKFILL

Shallow excavations for footings and utility trenches can readily be made with either a backhoe or trencher. We expect the walls of trenches less than 5-feet-deep to remain in a near-vertical configuration during utility construction provided equipment or excavated spoil surcharges are not located near the top of the excavation. Where trenches extend deeper than 5 feet, the excavation can become unstable. Groundwater may also be encountered in shallow excavations for utilities depending on the time of year construction commences. As such, the Contractor should be prepared to dewater the utility excavations by pumping from temporary sumps or by other similar methods, at the Contractor’s option.

We recommend a minimum compaction of trench backfill as previously presented in Section 5.2.6, Table 1. Care should be taken to adequately compact utility trench backfill in all structure areas including pavements. Poor compaction will likely cause subsequent settlement of the trench, resulting in possible distress cracking to the overlying structure or pavement.

5.4 FOUNDATIONS

5.4.1 Spread Footing Design Criteria

The bottom of the excavations for the building will be in bedrock. The building should be supported on either spread footings bottomed on bedrock, drilled piers supported in bedrock, or a combination of the two. Small structures, not critical to differential settlement, can be supported on spread footings bottomed in either compacted fill or stiff native soil. Where structures are supported on or into bedrock, we estimate that post-construction total foundation settlement for column loads up to 100 kips will be less than ½-inch. Post-construction differential settlement between foundation elements is estimated to be less than ¼-inch. Settlement for column loads
greater than 200 kips will need to be evaluated on a case-by-case basis. The following bearing capacity values in pounds per square foot (psf) should be used for spread footings:

<table>
<thead>
<tr>
<th>LOAD</th>
<th>ENGINEERED FILL</th>
<th>BEDROCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead Load</td>
<td>2000 allow.</td>
<td>4500 allow.</td>
</tr>
<tr>
<td></td>
<td>7500 ult.</td>
<td>15000 ult.</td>
</tr>
<tr>
<td>Dead +Live Load</td>
<td>2500 allow.</td>
<td>5000 allow.</td>
</tr>
<tr>
<td></td>
<td>7500 ult.</td>
<td>15000 ult.</td>
</tr>
<tr>
<td>Total Load</td>
<td>3000 allow.</td>
<td>5500 allow.</td>
</tr>
<tr>
<td></td>
<td>7500 ult.</td>
<td>15000 ult.</td>
</tr>
</tbody>
</table>

Individual spread footings should be at least 18 inches wide and continuous footings should be at least 12 inches wide. All footings should be bottomed at least 24 inches below the lowest adjacent grade. The bottom of footing excavations should be firm and free of loose soil, rock, and standing water.

5.4.2 Lateral Resistance

Lateral loads on spread footing foundations should be resisted by friction on the bottoms of footings and passive pressure on the sides of footings. A factor of 0.3 times the dead load should be used to determine allowable friction resistance in soil and bedrock; the ultimate friction value is 0.58. A value of 350 pounds per cubic foot (pcf) equivalent fluid weight (efw) should be used to determine allowable passive pressure in soil. The ultimate value is 700 pcf. A value of 2000 psf should be used in bedrock to determine the passive pressure resistance; the ultimate value is 4000 psf. The upper foot of soil or bedrock should be neglected in computing passive pressure resistance unless covered with pavement or concrete slabs.

Lateral loads can be resisted by the drilled piers. The lateral capacity of piers should be determined by using LPILE* when the pier sizes, vertical and lateral loads, allowable deflections, and location of piers in relation to the existing or proposed slopes are known.

*LPILE is a program licensed by ENSOFT, INC., P.O. Box 180348, Austin, Texas 78718
Lateral loads also can be resisted by passive pressure against grade beams and pile caps as previously described above for spread footings.

5.4.3 Drilled Pier Design Criteria

A drilled pier foundation should consist of piers drilled at least 10 feet into bedrock. The piers should be at least 18 inches in diameter and should be connected with grade beams. The pier capacity should be obtained from skin friction in the bedrock. Piers should be spaced at least three diameters on-center for vertical loads. The upper two diameters of the pier and lower one pier diameter should be neglected in computing the capacity. End bearing should not be included in the design. The skin friction values shown in the following table should be used.

<table>
<thead>
<tr>
<th>LOAD</th>
<th>BEDROCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead +Live Load</td>
<td>1000 allow.</td>
</tr>
<tr>
<td></td>
<td>2000 ult.</td>
</tr>
<tr>
<td>Total Load</td>
<td>1300 allow.</td>
</tr>
<tr>
<td></td>
<td>2000 ult.</td>
</tr>
</tbody>
</table>

The above values should be decreased by 30 percent when used for resisting uplift loads.

Piers should be deepened as necessary so as to provide at least seven feet of horizontal confinement to the nearest slope face. For closer pier spacing, there will be a capacity reduction factor that should be applied to the pier capacities as determined by the Geotechnical Engineer. Piers should be reinforced for their full depth as designed by the Structural Engineer. The above pressures are design values for use in working stress analyses and contain an appropriate factor of safety.

To retard wet concrete from settling, the pier holes should not contain more than three inches of slough or cuttings. It may be necessary to remove or tamp the slough prior to concrete placement as determined in the field by the Geotechnical Engineer.

No caving soils or bedrock were encountered during our exploration. However, groundwater and/or caving soils or bedrock could be encountered and should be anticipated during pier
drilling. If caving soils or bedrock are encountered, it may be necessary to case the holes. If groundwater is present, it may be necessary to dewater the holes or to place the concrete by an approved pumping method.

5.5 RETAINING WALLS (15 FEET OR LESS IN HEIGHT)

Lateral pressures on retaining walls that are free to rotate or fixed at the top should be determined using the equivalent fluid weights shown in the following table.

<table>
<thead>
<tr>
<th>BACKFILL SLOPE</th>
<th>FREE TO ROTATE</th>
<th>FIXED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>45 pcf</td>
<td>60 pcf</td>
</tr>
<tr>
<td>3H:1V</td>
<td>50 pcf</td>
<td>70 pcf</td>
</tr>
<tr>
<td>2H:1V</td>
<td>60 pcf</td>
<td>80 pcf</td>
</tr>
</tbody>
</table>

A traffic surcharge should be added to the walls where appropriate. The surcharge load can be estimated by assuming two feet of additional soil load behind the wall. If a seismic load is applied to the wall, the pressure should be determined by using 12H psf, where H is the wall height. The seismic load should be applied as a uniform pressure over the wall height.

Lateral wall forces can be resisted by friction on the bottom of the foundation and passive pressure against the face of the foundation. The allowable friction factor should be 0.3 and the allowable passive pressure should be determined using an equivalent fluid weight of 350 pcf. The upper foot of soil should be neglected unless it is covered with pavement. If piers are used for wall foundations, the lateral resistance can be provided by the piers.

Retaining wall foundations should be designed as previously described in Section 5.4.

5.6 TIE-BACK WALLS

Where the wall height is about 15 feet or more, a tie-back anchored or soil nail wall may be appropriate. We recommend that tie-back anchored walls be used for the higher walls. If soldier piles are used, they should extend a minimum of 10 feet below the bottom of excavation.
5.6.1 Lateral Pressures

Anchored tie-back walls should be designed for a soil pressure (p) using the formula
\[p = 0.65K_a \delta H \]
where \(K_a \) is the coefficient of active pressure, \(\delta \) is the effective unit weight (130
pcf), and \(H \) is the wall height. The soil pressure should be greater than 50H, as discussed in
Appendix D, and provide a factor of safety greater than 1.5 for permanent construction. \(K_a \)
values for various backfill slopes are shown in the following table. The soil pressure increase
should be applied as a triangular pressure down to the first anchor and then as a uniform pressure
over the remaining wall height. If a seismic load is to be applied to the wall, the pressure should
be determined using the formula 12H psf. This pressure should be applied over the wall height.
These recommendations do not include loads imposed by adjacent structures. We can assist in
evaluating the affects of these additional loads on the wall design if needed.

<table>
<thead>
<tr>
<th>BACKFILL SLOPE</th>
<th>(K_a) VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>0.46</td>
</tr>
<tr>
<td>3H:1V</td>
<td>0.56</td>
</tr>
<tr>
<td>2H:1V</td>
<td>0.76</td>
</tr>
</tbody>
</table>

5.6.2 Rock Bolts/Tie-backs

Allowable bond-strength values of 1000 psf for dead load plus live load and 1300 psf for total
load should be used for estimating tie-back anchor and rock bolt capacities in bedrock. The
ultimate bond-strength value is 2000 psf. The values given are for gravity grouting. Somewhat
higher values would normally be obtained with pressure grouting. All bond-strength values
should be confirmed by field performance tests. The specifications should be written so that the
Contractor determines the size of the anchor and grouting procedure within Post Tension

The anchors should be bonded in bedrock and the anchor tip should extend at least to a 2H:1V
influence line that slopes up from the toe of the wall, or greater as more detailed analysis
dictates. Bonded lengths should be a minimum of 20-feet-long. At least 10 percent of the
anchors should be performance tested and all of the anchors should be proof tested in accordance
Anchors in the type of bedrock encountered at the site are frequently about six feet on-center, both vertically and horizontally, with the top row about three feet below the ground surface. The anchors and wall at each level should be installed and the anchors tested before the next level is excavated.

5.7 WALL DRAINAGE

All retaining walls should be backdrained with a drain rock and pipe system or with geotextile drain material. Backdrains should consist of 4-inch-diameter pipe embedded in drain rock. The pipe should be PVC or ABS with a SDR of 35 or better, and the pipe should be sloped to drain to outlets by gravity. Drain rock should consist of clean, free-draining crushed rock or gravel. The rock should be wrapped in filter fabric, Mirafi 140N or equivalent. Caltrans Class 2 Permeable Material can be used in place of the crushed rock or gravel. If Caltrans Class 2 Permeable Material is used, the fabric can be omitted. The top of the pipe should be at least eight inches below the lowest adjacent grade. The drain rock should extend to within one foot of the surface. The upper one-foot should be backfilled with compacted clayey soil to exclude surface water unless capped by a paved surface. Where migration of moisture through retaining or basement walls would be detrimental, the walls should be waterproofed.

Backdrainage for anchored walls should be a strip of Ameridrain 500 or equal with a drain-rock surrounded PVC or ABS perforated collector pipe at the wall bottom. The drain strips should be at least 2-feet-wide and centered between tie-backs. Drain strips should be wider than 2 feet, if practical.

5.8 CONCRETE SLABS-ON-GRADE

Concrete slabs-on-grade for this project may consist of interior living space, exterior flatwork, and walkways. To minimize the potentially adverse affects of expansive soil shrink/swell movement on slabs, we recommend that either native or imported select fill be placed and compacted as previously described in Section 5.2 of this report.
Interior concrete slabs-on-grade should be supported on at least 4 inches of slab base rock to provide a capillary moisture break from the underlying soil. This rock should be graded such that 100 percent passes the 1 1/2-inch sieve and no more than 5 percent passes the No. 4 sieve. If the subgrade soils are allowed to dry out prior to concrete slab-on-grade construction, they should be re-moisture conditioned. The slab subgrade soils should be maintained as smooth, unyielding, free of loose materials and in a moist condition until slab base rock and concrete are placed.

Interior concrete slabs should be a minimum of 6-inches-thick and should be reinforced according to the recommendations set forth by the project Structural Engineer. In addition, slabs should be scored for crack control as recommended by the project Structural Engineer and/or Architect.

We recommend exterior slabs that may be subjected to traffic loads be a minimum of six inches thick and reinforced according to the recommendations set forth by the Structural Engineer. During construction, care should be taken such that reinforcement is placed at the slab mid-height, particularly when using welded-wire fabric. The exterior slabs should be separated from adjacent foundations by low-friction felt or mastic materials to allow for some differential movement at this interface.

Subsurface moisture and moisture vapor naturally migrate upward through soil and, where the soil is covered by a building or pavement, this subsurface moisture will collect. To reduce the impact of subsurface moisture and the potential impact of moisture that could be introduced in the future (such as landscape irrigation, precipitation, or leaking pipes), the current industry standard is to place a vapor retardant on the crushed rock layer. This membrane typically consists of visqueen or polyvinyl plastic sheeting at least 20-mil in thickness. It should be noted that, although vapor barrier systems are currently the industry standard, this system may not be completely effective in preventing floor slab moisture problems. These systems typically will not necessarily assure that floor slab moisture transmission rates will meet floor-covering manufacturer standards and that indoor humidity levels be appropriate to inhibit mold growth. The design and construction of such systems are totally dependent on the proposed use and
design of the proposed building, and elements of building design and function should be considered in the slab-on-grade floor design. Building design and construction may have a greater role in perceived moisture problems since sealed buildings/rooms or inadequate ventilation may produce excessive moisture in a building and affect indoor air quality.

Various factors such as surface grades, adjacent planters, the quality of slab concrete, and the permeability of the on-site soils affect slab moisture and can control future performance. In many cases, floor moisture problems are the result of either improper curing of floor slabs or improper application of flooring adhesives. We recommend contacting a flooring consultant experienced in the area of concrete slab-on-grade floors for specific recommendations regarding proposed flooring applications.

Special precautions must be taken during the placement and curing of concrete slabs. Excessive slump (high water-cement ratio) of the concrete and/or improper curing procedures used during either hot or cold weather conditions could lead to excessive shrinkage, cracking, or curling of the slabs. High water-cement ratio and/or improper curing also greatly increase the water vapor permeability of concrete. We recommend that concrete placement and curing operations be performed in accordance with the American Concrete Institute (ACI) Manual.

It should be emphasized that Kleinfelder personnel are not moisture proofing experts for floors and/or retaining walls. We make no guarantee, nor provide any assurance, that use of the capillary break/vapor retardant system will reduce concrete slab-on-grade floor moisture penetration to any specific rate or level, particularly those required by floor covering manufacturers. The builder and designers should consider all available measures for slab moisture protection.

5.9 SURFACE AND SUBSURFACE DRAINAGE CONTROL

The area adjacent to the building should be sloped so as to provide positive surface drainage. Slope gradients should be a minimum of four percent extending at least five feet out from the buildings. In general, the roofs should be provided with gutters and downspouts that discharge
into rigid pipes with watertight joints that outflow into the site storm drain system or an appropriate outlet area.

Where irrigated landscape areas abut the building, excess water can be introduced into soil layers along building edges, tending to soften soils and increase the risk of potential migration of moisture into under-floor areas. Planned landscaping may need surface and subsurface drainage improvements. We can evaluate the need for such drainage facilities during final design, if requested.

Beneath the perimeter of the building, all utility trenches should be backfilled with compacted non-pervious fill material a minimum of five feet on either side of the foundation to reduce water infiltration into the under-floor area of the buildings. Special care should be taken during installation of sub-floor water and sewer lines to reduce the possibility of leaks.
6.0 ADDITIONAL SERVICES AND LIMITATIONS

6.1 ADDITIONAL SERVICES

Kleinfelder recommends that we be retained to review the preliminary structural design to provide supplemental geotechnical investigation and recommendations, as required. Kleinfelder should also be retained to review the final project plans and specifications to determine if they are consistent with the recommendations presented in this report. In addition, we should be retained to observe and test during project construction. Additional information on subsurface conditions at the site will become available during the course of construction. As such, the review of project plans and specifications, along with field observation and testing during earthwork by Kleinfelder, are an integral part of the conclusions and recommendations made in this report and are required for Kleinfelder to remain Engineer-of-Record throughout the project. If Kleinfelder is not retained for these services, then Lawrence Berkeley National Laboratory (Owner) will be assuming Kleinfelder’s responsibility for any potential claims that may arise during, or after, construction and Kleinfelder will cease to be the geotechnical Engineer-of-Record. The recommended tests, observations, and consultation by Kleinfelder prior to and during construction include but are not limited to:

- Prior to selection of the structure foundation system, our office should review the plans and provide supplemental geotechnical recommendations, as required.

- Prior to construction, our office should review the plans and specifications to check that they are in conformance with the recommendations contained in this Geotechnical Report.

- During construction, our engineer should observe and/or test the following:
 - Pre-construction meeting.
 - Site grading and excavation, including site stripping, removal of undocumented fill, and engineered fill construction.
 - Sub-grade preparation.
 - In-place density testing of fills, backfills, and finished sub-grades.
 - Observation of all foundation excavations.
These supplemental services would be performed on an as-requested basis and would be in addition to the fee charged for this geotechnical investigation. If others perform such construction observation, we cannot be responsible for their interpretation of our conclusions and recommendations presented herein.

We have provided the Client with 4 bound originals copies of this report. If additional copies are required, we can provide them at an additional fee (in accordance with our current fee schedule) after receipt of a written request from our Client. **Under no circumstances will we provide a copy of the report to other design consultants or contractors without written permission from our Client.**

If more than 36 months have elapsed between the submission of this report and the start of subsequent project construction, or if conditions have changed because of natural causes or other construction operations at or adjacent to the site, the recommendations made in this report may no longer be valid or appropriate. In such cases, we recommend that this report be reviewed by us to determine the applicability of the conclusions and recommendations considering the time lapsed or changed conditions. The recommendations made in the report are contingent upon such a review.

6.2 LIMITATIONS

This report has been prepared by Kleinfelder for the exclusive use of Lawrence Berkeley National Laboratory and their consultants for development of the proposed project described in this report. In addition, a brochure prepared by ASFE (Association of Firms Practicing in the Geosciences) has been included at the front of this report. We recommend that all individuals reading this report also read this attached brochure.

Our services consist of professional opinions and conclusions developed in accordance with generally accepted geotechnical engineering principles and practices. We provide no other warranty, either expressed or implied. The conclusions and recommendations contained in this report are based on our new exploratory borings, laboratory testing, and engineering analysis.
We have also reviewed existing subsurface data from a number of sources listed in Section 2.3 of this report that we have assumed is representative of bedrock conditions at the site but it is possible that subsurface conditions could vary between or beyond the points explored. If soil and groundwater conditions are encountered during construction that differ from those described herein, our firm should be notified immediately in order that a review may be made and supplemental recommendations provided, if warranted. If the scope of the proposed construction, including the type of structures and planned grading, changes from that described in this report, our recommendations should also be reviewed and modified where necessary. Verification of our conclusions and recommendations is subject to our review of the project plans and specifications, and our observation of subsequent project construction.

Site conditions and cultural features described in the text of this report are those existing at the time of our investigation and as encountered in our subsurface exploration for this study and may not necessarily be the same or comparable at other times.

The scope of our services did not include an environmental assessment or an investigation of the presence or absence of hazardous or toxic materials in the soil, surface water, groundwater, or air on, below, or around this site.

This report may be used only by Lawrence Berkeley National Laboratory and only for the purposes stated, within a reasonable time from its issuance, but in no event later than 36 months from the date of the report. Land or facility use, on- and off-site conditions, regulations or other factors may change over time and additional work may be required with the passage of time. Any party other than the client who wishes to use this report shall notify Kleinfelder of such intended use. Based on the intended use of the report, Kleinfelder may require that additional work be performed and that an updated report be issued. Non-compliance with any of these requirements by the client or anyone else will release Kleinfelder from any liability resulting from the use of this report by any authorized party; and client agrees to defend, indemnify, and hold harmless Kleinfelder from any claim or liability associated with such unauthorized use or non-compliance.
PLATES
UNIFIED SOIL CLASSIFICATION SYSTEM

<table>
<thead>
<tr>
<th>MAJOR DIVISIONS</th>
<th>DESCRIPTIVE NAMES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAVELS</td>
<td></td>
</tr>
<tr>
<td>More than half</td>
<td>Clean Gravels With Little or No Fines</td>
</tr>
<tr>
<td>Coarse Fraction</td>
<td>GW: Well Graded Gravels, Gravel-Sand Mixtures</td>
</tr>
<tr>
<td>Is Larger than</td>
<td>GP: Poorly Graded Gravels, Gravel-Sand Mixtures</td>
</tr>
<tr>
<td>No. 4 Sieve</td>
<td>GM: Silty Gravels, Poorly Graded Gravel-Silt Mixtures</td>
</tr>
<tr>
<td></td>
<td>GC: Clayey Gravels, Poorly Graded Gravel-Sand-Clay Mixtures</td>
</tr>
<tr>
<td>SANDS</td>
<td></td>
</tr>
<tr>
<td>More than half</td>
<td>Clean Sands With Little or No Fines</td>
</tr>
<tr>
<td>Coarse Fraction</td>
<td>SW: Well Graded Sands, Gravelly Sands</td>
</tr>
<tr>
<td>Is Smaller than</td>
<td>SP: Poorly Graded Sands, Gravelly Sands</td>
</tr>
<tr>
<td>No. 4 Sieve</td>
<td>SM: Silty Sands, Poorly Graded Sand-Silt Mixtures</td>
</tr>
<tr>
<td></td>
<td>SC: Clayey Sands, Poorly Graded Sand-Clay Mixtures</td>
</tr>
<tr>
<td>SILTS AND CLAYS</td>
<td></td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>ML: Inorganic Silts and Very Fine Sands, Rock Flour, Silty or Clayey Fine Sands, or Clayey Silts with Slight Plasticity</td>
</tr>
<tr>
<td>Less Than 50</td>
<td>CL: Inorganic Clays of Low to Medium Plasticity, Gravelly Clays, Sandy Clays, Silty Clays, Lean Clays</td>
</tr>
<tr>
<td>SILTS AND CLAYS</td>
<td></td>
</tr>
<tr>
<td>Liquid Limit</td>
<td>OL: Organic Clays and Organic Silty Clays of Low Plasticity</td>
</tr>
<tr>
<td>Greater Than 50</td>
<td>MH: Inorganic Silts, Micaceous or Diatomaceous Fine Sandy or Silty Soils, Elastic Silts</td>
</tr>
<tr>
<td></td>
<td>CH: Inorganic Clays of High Plasticity, Fat Clays</td>
</tr>
<tr>
<td>HIGHLY ORGANIC SOILS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OH: Organic Clays of Medium to High Plasticity, Organic Silts</td>
</tr>
<tr>
<td></td>
<td>Pt: Peat and Other Highly Organic Soils</td>
</tr>
</tbody>
</table>

FIELD SAMPLING
- California Sample 2.5" I.D.
- Modified California Sample 2" I.D.
- Disturbed, Bag or Bulk Sample
- Standard Penetration Test
- Shelby Tube Sample
- 3-1/2" I.D. Continuous Core Sample
- Unretained Portion of Sample
- Water Level Observed in Boring (at given post-drilling time)
- Water Level Observed in Boring (at time of drilling)

LABORATORY TESTS
- LL: Liquid Limit
- PI: Plasticity Index
- SA: Sieve Analysis
- #200: Percent Passing #200 Sieve
- RV: Resistance Value
- EI: Expansion Index
- DS: Direct Shear
- Tx/UU: Triaxial Shear-Unconsolidated Undrained
- UC: Unconfined Compression
- SG: Specific Gravity
- PP: Pocket Penetrometer Shear Strength (tsf)

NOTES:
The lines separating strata on the logs represent approximate boundaries only. The actual transition may be gradual. No warranty is provided as to the continuity of soil strata between borings. Logs represent the soil strata and groundwater observed at the boring location on the date of drilling only.

KLEINFELDER

BORING LOG LEGEND
- CRT Building
- Lawrence Berkeley National Laboratory
- Berkeley, California

PROJECT NUMBER 74911 **DATE** Jun 2007 **PLATE** A-1
GRAPHIC ROCK SYMBOLS

- SHALE OR CLAYSTONE
- SILTSTONE
- SANDSTONE
- CONGLOMERATE
- CHERT
- PYROCLASTIC
- VOLCANIC FLOWS
- PLUTONIC
- METAMORPHIC ROCKS
- ALTERED ROCKS
- SERPENTINITE
- SHEARED ROCKS

WEATHERING INDEX

W1 - FRESH - No visible sign of rock material weathering; perhaps slight discoloration on major discontinuity surfaces.

W2 - SLIGHTLY WEATHERED - Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker than in its fresh condition.

W3 - MODERATELY WEATHERED - Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh of discolored rock is present either as a discontinuous framework or as corestones.

W4 - HIGHLY WEATHERED - More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.

W5 - COMPLETELY WEATHERED - All rock material is decomposed and/or disintegrated to a soil. The original mass structure is still largely intact.

STRENGTH INDEX

R0 - EXTREMELY WEAK - Indented by thumbnail

R1 - VERY WEAK - Crumbles under firm blows with a point of geological hammer, can be peeled by pocket knife

R2 - WEAK - Can be peeled by a knife with difficulty, shallow indentations made by firm blow with point of geological hammer.

R3 - MEDIUM STRONG - Cannot be scraped or peeled with a pocket knife, specimen can be fractured with a single firm blow of geological hammer.

R4 - STRONG - Specimen requires more than one blow of geological hammer to fracture it.

R5 - VERY STRONG - Specimen withstands several blows of geological hammer without breaking.

R6 - EXTREMELY STRONG - Specimen can only be chipped with a geological hammer.

FRACTURE SPACING

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>WEIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERY LITTLE FRACTURED</td>
<td>Greater than 4.0 feet</td>
</tr>
<tr>
<td>OCCASIONALLY FRACTURED</td>
<td>1.0 to 4.0 feet</td>
</tr>
<tr>
<td>MODERATELY FRACTURED</td>
<td>0.5 to 1.0 feet</td>
</tr>
<tr>
<td>CLOSELY FRACTURED</td>
<td>0.1 to 0.5 foot</td>
</tr>
<tr>
<td>INTENSELY FRACTURED</td>
<td>0.05 to 0.1 foot</td>
</tr>
<tr>
<td>CRUSHED</td>
<td>Less than 0.05 foot</td>
</tr>
</tbody>
</table>

BEDDING OR LAYERING

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>WEIGHTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>VERY THICK OR MASSIVE</td>
<td>Greater than 4.0 feet</td>
</tr>
<tr>
<td>THICK</td>
<td>2.0 to 4.0 feet</td>
</tr>
<tr>
<td>THIN</td>
<td>0.2 to 2.0 foot</td>
</tr>
<tr>
<td>VERY THIN</td>
<td>0.05 to 0.2 foot</td>
</tr>
<tr>
<td>LAMINATED</td>
<td>0.01 to 0.05 foot</td>
</tr>
<tr>
<td>THINLY LAMINATED</td>
<td>Less than 0.01 foot</td>
</tr>
</tbody>
</table>
SOIL DESCRIPTION

ASPHALT CONCRETE = 7 inches
AGGREGATE BASE = 12 inches

GRAVELLY SANDY CLAY
dark yellow brown, moist, very stiff, subangular gravels up to 1" (fill)

SILTSTONE
dark yellow brown, completely weathered, very closely fractured, very weak

SANDSTONE
gray, highly weathered, very closely fractured, weak, thinly bedded

very difficult drilling

BOTTOM OF BORING K-1 @ 27 FEET
No Free Water Encountered

Surface Elevation: 712 **
Total Depth: 27.0 feet
Ground Water Depth: \(\frac{1}{2} \) feet at time of drilling

LOGGED BY: R. Padgett
EQUIPMENT: Mobile B-53
Diameter of Boring: 6
Date Drilled: 9-18-06

KLEINFELDER

PROJECT NUMBER 74911 DATE Jun 2007
Soil Description

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Depth (feet)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPHALT CONCRETE</td>
<td>5 inches</td>
<td></td>
</tr>
<tr>
<td>AGGREGATE BASE</td>
<td>9 inches</td>
<td></td>
</tr>
<tr>
<td>CLAYEY SANDY GRAVEL</td>
<td></td>
<td>light brown, dry, medium dense, fine to coarse grained sand, fine rounded gravel to 1/2" angular gravel (fill)</td>
</tr>
</tbody>
</table>

Encountered Concrete Duct Bank

Boring Terminated

Bottom of Boring K-2 @ 5.5 Feet

No Free Water Encountered

LOG OF EXPLORATION

BORING K-2

CRT Building

Lawrence Berkeley National Laboratory

Berkeley, California

Surface Elevation: 719' **

Total Depth: 5.5 feet

Ground Water Depth: feet at time of drilling

Logged By: R. Padgett

Equipment: Mobile B-53

Diameter of Boring: 6

Date Drilled: 9-18-06

KLEINFELDER

Project Number: 74911 **

Date: Jun 2007 **

PLATE: A-4

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (pcf)</td>
<td>Moisture Content (%)</td>
</tr>
<tr>
<td>117</td>
<td>14.2</td>
</tr>
<tr>
<td>124</td>
<td>11.6</td>
</tr>
<tr>
<td>118</td>
<td>13.4</td>
</tr>
</tbody>
</table>

SOIL DESCRIPTION

ASPHALT CONCRETE = 4 inches
AGGREGATE BASE = 12 inches

SILTSTONE:
- yellow brown with blue/gray clay seams, highly weathered, very closely fractured, very weak
- stiffer drilling

SANDSTONE:
- yellow brown to brown, highly to completely weathered, very closely fractured, very weak

SILTSTONE:
- yellow brown with blue/gray clay seams, highly weathered, very closely fractured, very weak

SANDSTONE:
- yellowish brown to reddish brown, moderately weathered, very closely fractured, friable

SHALE:
- blue gray, highly to completely weathered, very closely fractured, very weak, highly sheared with strong, rounded corestones

BOTTOM OF BORING K-3 @ 30 FEET.
Groundwater Encountered at 27 FEET

SURFACE ELEVATION: 762 **
TOTAL DEPTH: 30.0 feet
GROUND WATER DEPTH: 27.0 feet at time of drilling

LOGGED BY: R. Padgett
EQUIPMENT: Mobile B-53
DIAMETER of BORING: 6
DATE DRILLED: 9-18-06

KLEINFELDER

PROJECT NUMBER: 74911
DATE: Jun 2007

LOG OF EXPLORATION BORING K-3
CRT Building
Lawrence Berkeley National Laboratory
Berkeley, California

PLATE: A-5

1 of 1
<table>
<thead>
<tr>
<th>SAMPLE SOURCE</th>
<th>CLASSIFICATION</th>
<th>LIQUID LIMIT (%)</th>
<th>PLASTIC LIMIT (%)</th>
<th>PLASTICITY INDEX (%)</th>
<th>% PASSING #200 SIEVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊙ K-1 @ 10.0'</td>
<td>Siltstone</td>
<td>36</td>
<td>17</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>□ K-3 @ 14.5'</td>
<td>Siltstone</td>
<td>34</td>
<td>17</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>△ K-3 @ 28.0' - 29.5'</td>
<td>Shale</td>
<td>27</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
Strength Test Data

<table>
<thead>
<tr>
<th>Sample Source</th>
<th>Classification</th>
<th>Type of Test</th>
<th>Confinement Pressure (psf)</th>
<th>Shear Strength (psf)</th>
<th>Strain (%)</th>
<th>Dry Density (pcf)</th>
<th>Moisture Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊙ K-1 @ 5.0'</td>
<td>Gravelly Sandy Clay</td>
<td>TXUU</td>
<td>1440</td>
<td>9276</td>
<td>3</td>
<td>115</td>
<td>12.8</td>
</tr>
<tr>
<td>□ K-3 @ 3.0'</td>
<td>Siltstone</td>
<td>TXUU</td>
<td>374</td>
<td>7939</td>
<td>2</td>
<td>117</td>
<td>14.2</td>
</tr>
<tr>
<td>△ K-3 @ 4.5'</td>
<td>Siltstone</td>
<td>TXUU</td>
<td>720</td>
<td>6856</td>
<td>1</td>
<td>124</td>
<td>11.6</td>
</tr>
<tr>
<td>⊠ K-3 @ 14.5'</td>
<td>Siltstone</td>
<td>TXUU</td>
<td>2592</td>
<td>5063</td>
<td>2</td>
<td>118</td>
<td>13.4</td>
</tr>
</tbody>
</table>

UC = Unconfined Compression
TXUU = Unconsolidated Undrained Triaxial
The image contains a graph related to particle size analysis. The graph plots percent finer by weight against grain size in millimeters. The data points correspond to different samples, each with a specific classification. The samples are:

- **Symbol**: ○
 - **Sample Source**: K-1 @ 10.0'
 - **Classification**: Siltstone

- **Symbol**: □
 - **Sample Source**: K-3 @ 28.0' - 29.5'
 - **Classification**: Shale

The graph appears to show a trend that indicates a change in particle size distribution across different samples.
APPENDIX C
Mr. Jared Pratt
Kleinfelder, Inc.
2240 Northpoint Parkway
Santa Rosa, CA 95407

Subject: Seismic Refraction Survey
CRT Building, LBNL
Berkeley, California

Dear Mr. Pratt:

Advanced Geological Services, Inc. (AGS) presents this letter report to Kleinfelder, Inc. describing the results of a seismic refraction (SR) survey completed by geophysicist Dan Jones and field technician Steve Ward on August 31, 2006 at the subject site in Berkeley, California. Background information and site orientation were provided by Kleinfelder representatives.

SITE DESCRIPTION

The project site is located on a sloping hillside between Cyclotron Road and Building 70A at Lawrence Berkeley National Laboratory (LBNL). In general, the grassy ground surface is steeply sloping to the south in this area, with scattered eucalyptus trees. There is a sidewalk crossing the hillside toward the north-central portion of the site. A site map showing the seismic refraction survey location, overlain on a topographic map provided by Kleinfelder, is included as Figure 1. Locations of geotechnical borings and test pits were unavailable at the time this map was completed. Test pit information provided by Kleinfelder indicates approximately two feet of topsoil overlying colluvium, that in turn overlies an undifferentiated Cretaceous mixed sandstone-siltstone bedrock.

PURPOSE

Site information indicates that a new building is planned for the project site, with the approximate footprint as shown on Figure 1. It is AGS’s understanding that this installation may involve maximum cuts to depths of 30 to 40 feet bgs. The purpose of the seismic refraction survey was to measure the (compressional or p-wave) velocity of subsurface seismic layers. AGS understands that this information will be used in conjunction with the boring and test pit results to evaluate the subsurface conditions, specifically the excavation characteristics, or rippability, of bedrock for pre-construction planning.
SEISMIC REFRACTION (SR) METHOD

The seismic refraction method provides information regarding the seismic velocity structure of the subsurface. The method is based upon the generation and propagation of an elastic wave (compressional P-wave) into the subsurface. The P-wave propagates through the ground and is refracted along interfaces that mark an increase in velocity. Part of the P-wave energy is refracted back to the ground surface and is subsequently monitored by a series of co-linear, vibration-sensitive devices called geophones that are placed at the ground surface. The resulting seismic waveforms are recorded on a seismograph and analyzed to determine the depth and velocities of subsurface seismic layers.

The physical properties of earth materials (fill, sediment, rock) such as compaction, density, hardness, and induration dictate the corresponding seismic velocity of the material. Additionally, other factors such as bedding, fracturing, weathering, and saturation can also affect seismic velocity. In general, low velocities are typically indicative of loose soil, poorly compacted fill material, poorly to semi-consolidated sediments, deeply weathered, and highly fractured rock. Conversely, high velocities are indicative of competent rock or dense and highly compacted sediments and fill. The highest velocities are measured in unweathered and little fractured rock.

There are certain limitations associated with the SR method as applied for this investigation. These limitations are primarily based on assumptions that are made by the data analysis routine. The data analysis routine assumes that the velocity of subsurface materials typically increase with depth. Therefore, if a layer exhibits velocities that are slower than those of the material above it, the slower layer may not be resolved. Also, a velocity interval may simply be too thin to be detected, for instance the upper weathered portion of the bedrock surface, if only a few feet thick.

The quality of the field data is critical to the construction of an accurate depth and velocity profile. Strong, clear “first-break” information from refracted interfaces will make the data processing, analysis, and interpretation much more accurate and meaningful. Vibrational noise or poor subsurface conditions can decrease the ability to accurately locate and pick seismic waves from the interfaces.

Due to these and other limitations inherent to the seismic refraction method, resultant velocity cross-sections should be considered only as approximations of the subsurface conditions. The actual conditions may vary locally. The actual conditions may vary locally and could warrant follow-up intrusive work for verification.

SEISMIC REFRACTION FIELD SURVEY

AGS obtained seismic refraction data along two (2) lines as shown on the Site Map (Figure 1). These lines are labeled A and B and are oriented roughly parallel to the topographic contours. Line A is located approximately 10-35 feet west of the head of the slope. Line B occurs further downslope by 85 to 100 feet. The approximate positions of these lines were chosen by
Kleinfeld to provide information in the desired locations and adjusted in the field based on accessibility. The approximate final position of each line was recorded on a topographic map supplied by Kleinfeld. The lines were each 225 feet in length (from end-shot to end-shot) to provide the desired depth of investigation (30-40 feet bgs). They were each comprised of one seismic spread consisting of 24 geophones and five shot points. The geophones were coupled to the ground surface in collinear arrays at 9 foot intervals. Shot points were located at the each end of each line and then every 54 to 58.5 feet along the lines. AGS used the supplied topographic map and some on-site hand-leveling to assign elevations to each geophone and shotpoint.

AGS produced P-waves through multiple impacts with a 16-lb sledge hammer against a metal plate placed on the ground surface. An accelerometer-switch attached to the hammer transmits a triggering pulse to the seismograph each time it strikes the plate. AGS detected the P-waves produced by the hammer impacts using 10-Hz high output geophones. The detected seismic signals were digitized and recorded using a DAQ Link II Seismograph. The data were recorded on an internal hard drive for later analysis.

DATA ANALYSIS

AGS downloaded the seismic data to a computer and processed it using the program SeisOpt Picker by Optim, Inc. to determine the shot point to geophone travel times. These travel times represent the first arrival of the P-wave energy to each geophone along the 24 channel spread. For each line, all first arrivals were determined in this fashion and combined to plot travel time versus geophone distance graphs, or “TD” graphs. These values, the travel times, and the location and relative elevation of each shot point and geophone were then entered into the computer program SeisOpt@2D (also by Optim, Inc.). The computer program uses a tomographic method, “discretizing” the subsurface below the line into grid cells of an appropriate size and assigns a velocity to each cell. Forward modeling is performed, generating test velocity models, through which travel times are calculated. These calculated travel times are compared with the observed data. The program then uses the generalized simulated annealing technique to perform a nonlinear optimization. It iteratively adjusts the velocities of each cell, recalculates the travel times, and reduces the error between the calculated and observed travel times. The optimal solution is the velocity model with the minimum acceptable travel-time error.

The final results of the seismic velocity tomographic modeling are presented as velocity cross sections of the subsurface. Each cross section contains a grid of seismic velocities as a function of horizontal distance and depth (or elevation). The grid is color contoured using SURFER (by Golden Software) to show an areal distribution of seismic velocity along each line, as opposed to a simple layered model. The same velocity contour scale is used for each line to allow for side-by-side comparison of the profiles.

The tomographic method, unlike traditional refraction processing techniques that employ either the generalized reciprocal method (GRM) or variations of the time-delay method, images velocity gradients in the subsurface. As is often the case in reality, the tomographic method reveals subsurface velocities as gradients and not solid layers. An appropriate gradient is
introduced between horizons defined by discrete velocities. The interface between layers is the depth at which the gradient change is the steepest. In general, this will be shallower than the actual depth at which the layer velocity is encountered in the resulting velocity contour cross-section. For example, the interface between layers that have average velocities of 500 ft/s and 2000 ft/s, will not be at the 2000 ft/s contour line, but rather shallower where velocities are about 1,250-1,500 ft/s (i.e. typically where the contours are most closely spaced). Aside from increased resolution of velocities with depth, an additional benefit of the tomographic method includes the ability to incorporate lateral changes in seismic velocities across a bedrock refractor.

RESULTS AND DISCUSSION

The results of the seismic refraction survey along Lines A and B are represented by the seismic velocity cross-sectional profiles shown on Figures 2 and 3, respectively. The velocity cross-sectional profiles are presented as contoured results, with south to the left in each figure. This presentation is meant to show increased resolution of the velocities along each line, as opposed to a standard two or three layer earth model. Small contour closures, or very erratic contour lines along the edges of the cross sections may be attributable to processing artifacts. The overall cross-sections from this type of presentation, however, may be more representative of true subsurface conditions, particularly in the near-surface where gradational weathering may be experienced.

The cross-sections on Figures 2 and 3 indicate subsurface velocities ranging from 1,000 to 7,000 feet per second (ft/s). The estimated depth of investigation is approximated at 20 to 35 feet for Line A and 40 to 50 feet for Line B. The shallower depth of investigation for Line A may be attributable to refractor geometry or other unknown subsurface conditions toward the top of the slope. Along Line A, at depths below ground surface greater than 10-to-15 feet, the velocity ranges from 3,000 to 3,800 feet per second. Along Line B, higher velocity material is observed at depth, ranging up to 7,000 feet per second. The maximum velocity observed within forty feet of the ground surface (proposed maximum cut depth) along Line B is approximately 5,800 feet per second. The highest velocity material along Line B appears to be slightly deeper toward the middle of the profile than at the north and south ends of the line.

EXCAVATION CHARACTERISTICS (RIPPABILITY)

Seismic velocity charts relating seismic velocity and excavation characteristics have been developed from field tests by others. These charts list the seismic velocity of various types of bedrock materials and their relative ease of excavation using different types of rippers. Caterpillar Tractor Company publishes a performance manual that lists ripper performance charts for various size tractors and types of rippers. A review of a ripper performance chart from the Caterpillar Performance Handbook (October, 1997) indicates that with a D8R, sedimentary rock is rippable up to 6,300 ft/s and marginally rippable to 8,500 ft/s. Similarly, with a D11R, sedimentary rock is rippable up to 9,700 ft/s and marginally rippable to 12,000 ft/s.

This information should only be used as a general guide, however, as many other factors should also be considered. These factors include the rock jointing and fracture patterns, the experience of the equipment operator, and the equipment and excavation methods selected. This
information should be combined with a complete and thorough analysis of test pit information, the geotechnical boring data, as well as local ripping experience (if available) to make a final assessment.

DATA QUALITY AND ADDITIONAL DISCUSSION

Overall, the seismic refraction data quality for this project was good. This estimation was determined based on the strength and relative obviousness of the refraction arrivals from the multiple velocity interfaces. AGS made a considerable effort to increase the signal-to-noise ratio where the data appeared of lesser quality by stacking additional impacts of the sledgehammer beyond what was necessary under normal conditions. Frequency filters were applied to the collected seismic data to attempt to minimize the effects of the observed noise.

CLOSING

All geophysical data and field notes collected as a part of this investigation will be archived at the AGS office. The data collection and interpretation methods used in this investigation are consistent with standard practices applied to similar geophysical investigations. The correlation of geophysical responses with probable subsurface features is based on the past results of similar surveys although it is possible that some variation could exist at this site. Due to the nature of geophysical data, no guarantees can be made or implied regarding the targets identified or the presence or absence of additional objects or targets.

It was a pleasure working with you on this project and we look forward to being able to provide you with geophysical services in the future.

Respectfully,

Advanced Geological Services, Inc.

Daniel P. Jones
Senior Geophysicist, PGp

Enclosure: Figures 1: Seismic Refraction Site Map
 Figures 2-3: Seismic Refraction Profiles
NOTE:
1) Data were acquired with a 24 Channel DAQ Link II Seismograph coupled with 10 Hz geophones at 9 feet intervals. Data collection involved performing five shotpoints per line spaced every 54.59 feet.
2) Surface elevations are approximate.
3) Data were processed with SeisOpt2D refraction interpretation software by Optim, Inc. Due to the limitations inherent to the seismic refraction method the velocity cross-section, although very detailed, should be considered an approximation of subsurface conditions.
NOTE:
1) Data were acquired with a 24 Channel DAQ Link II Seismograph coupled with 10 Hz geophones at 9 feet intervals. Data collection involved performing five shotpoints per line spaced every 54-56.5 feet.
2) Surface elevations are approximate.
3) Data were processed with SeisOpt20 refraction interpretation software by Optim, Inc. Due to the limitations inherent to the seismic refraction method, the velocity cross-section, although very detailed, should be considered an approximation of subsurface conditions.
APPENDIX D
TECHNICAL MEMORANDUM (APPENDIX D)

TO: Mark Stanley, GE DATE: 09/21/06

FM: Chad Lukkarila CEG, Brendan Fisher, PE, PG PROJECT 74911: Task 1

RE: LBNL CRT Building Cut Slope Preliminary Design Summary
Berkeley, California

As requested, we have completed preliminary estimates of the wall pressure, extent of bolting to support the vertical cuts on the back and side cuts, and foundation bearing pressure for spread footing foundations.

Stereonets

For the first part of our analysis, we plotted the orientations of the discontinuities mapped on stereonets using the computer programs Dips Version 5.0 by Rocscience and ROCKPACK III by C. F. Watts (2001) and preformed a Markland Analysis (Plate D-1). Where the stability of a rock cut is controlled by the structure of the rock mass, a Markland analysis is a well documented and widely accepted design tool even though the analysis does not provide a safety factor relating shear stresses to shear strength (Hoek and Bray, 1981; FHWA, 1998). The information required to perform the analysis are the design slope dip and dip direction, the orientation of the discontinuities within the rock mass, and the friction angle of the lithologies represented in the rock cut. Stereonets provide a two-dimensional representation of the three-dimensional discontinuity data. We plotted both poles and dip vectors. The poles tend to accentuate the orientation of steeply dipping discontinuities while the dip vectors lend themselves to performing Markland analyses.

The Markland analysis does not consider a cohesion intercept when modeling the strength of discontinuities. This method also assumes that the discontinuities are continuous and through-going with no "bridging" within the discontinuity. The effect of "bridging" would allow a tensional component (or cohesion intercept) of discontinuity strength. The factor of safety of the slope is estimated by dividing the tangent of the friction angle by the tangent of the dip of the discontinuity or the plunge of the line of intersection of two discontinuities. Therefore, when the dip of a discontinuity or the plunge of the line of intersection is greater than friction angle, the factor of safety is less than 1.0. When the dip of a discontinuity or the plunge of the line of
intersection is less than the friction angle, the factor of safety is greater than 1.0. In either case, the structure will not daylight the slope if the dip or plunge is greater than the dip of the slope face.

We assumed friction angles of 30 degrees based on the detailed geomechanical information that we collected in the field, experience with similar rock types, and guidance from the Rock Slopes Reference Manual (FHWA, 1998). Vertical cut slopes are planned for the back wall and sidewall of the excavation. By inspection of the stereonets, we concluded that the proposed slope inclinations have the potential for wedge-, planar-, and toppling-type failures from the back wall and sidewall (Plate D-2).

Geomechanical Classifications

For the second part of our analysis, we completed geomechanical rock mass classifications. These classifications are accomplished using the field data and therefore are more of a design tool than actual field data collection. Two of the more widely accepted classifications systems are the Rock Mass Rating System (RMR) by Bieniawski (1989) and the Geological Strength Index (GSI) from Hoek (1997).

The RMR, also referred to as the geomechanics classification system, is based on the algebraic sum of six rock mass property ratings, namely:

- Strength of intact rock material (uniaxial compressive strength)
- Rock quality designation (RQD)
- Spacing of discontinuities
- Condition of discontinuities
- Groundwater conditions
- Orientation of discontinuities relative to the excavation or rock slope

To estimate the RMR, we compared field data to published tables by Bieniawski (1989). Values for RMR can range from 0 to 100. From the ratings, rock class and corresponding descriptions and engineering properties are assigned to the overall rock mass. Bieniawski’s RMR classification can be related to Hoek’s (1997) Geological Strength Index (GSI). If the 1989 version of Bieniawski’s RMR classification is used, the GSI = RMR_{69} – 5 where RMR_{69} has the “Groundwater” rating set to 15 and “Adjustment for Joint Orientation” set to zero. For
example, assume a RMR is calculated to be 30 with the groundwater rating set to 15 and the joint orientation adjustment set to −5 for favorable joint orientations. Correcting the RMR as stated above, it would equal 35 (groundwater set to 15 and joint orientation adjustment set to zero). The calculated GSI would then be calculated as RMR − 5, or 30. The GSI rating can also be estimated directly from the information that we collected during our field mapping.

The rock mass information collected at site indicates a siltstone with rock strength of 0.25 to 1 MPa (36 to 145 psi), or extremely weak rock. The RQD was estimated to be 5, which indicates a highly fractured rock mass. The RMR and GSI were estimated to be approximately 40 +/- 5, which indicated a very blocky to disturbed, fair quality rock mass with fair quality, moderately weathered discontinuity surfaces.

Slope Stability and Wall Pressure

For the third part of our analysis, we completed slope stability analyses for the potential wedge and planar-type failures along with a global stability analysis for failure through the rock mass. We utilized the computer programs Rocplane V. 2.0 and Swedge V.4.0 by Rocscience® to complete the stability analyses on the potential wedge and planar-type failures. We assumed cohesion of zero and a friction angle of 30 degrees. We assumed a slope height of 43 feet based on the cross-section of the excavation. Plates D-3 and D-4 display the wedge and planar-type failures that are possible from the back wall and sidewall.

The geometry of each potential failure outlined in Plates D-3 and D-4 were analyzed using the computer programs discussed above to estimate the factor of safety. If the factor of safety was less than 1.0, we estimated a wall pressure to achieve a factor of safety greater than 1.0. Table 1 summarizes the failure geometries and the required wall pressures. Additionally, we estimated an equivalent earth pressure distribution for the design of a retention system during construction based on the “Plane 1” block geometry of the cut slope back wall listed below. Based on our calculations, the equivalent fluid pressure (safety factor of 1.0) is 50H (PCF).
Table 1. Summary of Potential Wedge and Planar Type Failures

<table>
<thead>
<tr>
<th>Failure Geometry</th>
<th>Factor of Safety</th>
<th>Pressure Required for Factor of Safety >1.0 – rectangular distribution (tsf)</th>
<th>Width of Wedge on Upper Slope Surface (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut Slope Back Wall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plane 1</td>
<td>0.4</td>
<td>0.50</td>
<td>29</td>
</tr>
<tr>
<td>Wedge 1</td>
<td>0.3</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Wedge 2</td>
<td>1.1</td>
<td>NA</td>
<td>21</td>
</tr>
<tr>
<td>Wedge 3</td>
<td>1.0</td>
<td>NA</td>
<td>30</td>
</tr>
<tr>
<td>Wedge 4</td>
<td>0.4</td>
<td>0.35</td>
<td>29</td>
</tr>
<tr>
<td>Wedge 5</td>
<td>1.5</td>
<td>NA</td>
<td>45</td>
</tr>
<tr>
<td>Wedge 6</td>
<td>0.4</td>
<td>0.35</td>
<td>29</td>
</tr>
<tr>
<td>Wedge 7</td>
<td>0.2</td>
<td>0.22</td>
<td>11</td>
</tr>
<tr>
<td>Cut Slope Sidewall</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plane 1</td>
<td>0.2</td>
<td>0.50</td>
<td>12</td>
</tr>
<tr>
<td>Wedge 1</td>
<td>2.0</td>
<td>NA</td>
<td>35</td>
</tr>
<tr>
<td>Wedge 2</td>
<td>0.3</td>
<td>0.25</td>
<td>14</td>
</tr>
<tr>
<td>Wedge 3</td>
<td>0.2</td>
<td>0.25</td>
<td>11</td>
</tr>
<tr>
<td>Wedge 4</td>
<td>0.2</td>
<td>0.19</td>
<td>8</td>
</tr>
<tr>
<td>Wedge 5</td>
<td>1.7</td>
<td>NA</td>
<td>18</td>
</tr>
</tbody>
</table>

We utilized the computer program Slide V. 5.0 by Roescience® to complete the global stability analysis of the proposed cut slope. The proposed slope is stepped with a 43-foot high upper wall and a 30-foot high lower wall separated by a 45-foot wide horizontal bench. We estimated the Hoek-Brown strengths using the geomechanical data that we collected in the field. The following list presents specific design data for the cut slope.

- Siltstone
 - Rock Strength = 0.7 MPa (102 psi)
 - GSI = 40
Figure 5 displays the stability analysis of the proposed slope and the estimated wall pressure required for a factor of safety greater than 1.0. The model indicates a rectangular pressure distribution over the height of the upper cut slope (43 feet) of 1,200 psf. We also estimated the pressure based on a standard triangular pressure distribution. Based on our calculations, the equivalent fluid pressure is 50H (PCF).

Foundation Bearing Pressure

The bearing pressure of footings on rock depends on the presence of discontinuities, weathering and the quality of the rock mass. The Caltrans Bridge Design Specifications dated April 2000 provides presumptive bearing pressure values for preliminary design of simple structures on good quality rock masses (Caltrans Table 4.11-4.1.4-1). In his book, *Foundations on Rock* (1999), Dr. Duncan Wylie provides estimates for bearing pressures based on rock strength and rock quality designation (RQD). Dr. Wylie states that bearing pressure estimates should be reduced for fractured rock based on the RQD. He states that for a RQD less than 50, the bearing pressure estimate should be reduced by a factor of 0.25 to 0.1. We estimated a RQD of 5 for the siltstone. Table 2 summarizes the pressure ranges based on Caltrans and the RQD adjusted ranges possible for the siltstone present at the site. We assumed a bearing pressure adjustment of 0.25 for the RQD.

<table>
<thead>
<tr>
<th>Type of Material</th>
<th>Consistency in Place</th>
<th>Ordinary Range (tsf)</th>
<th>RQD Adjusted Range (tsf)</th>
<th>Recommended Value (tsf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedimentary Rock: Siltstone</td>
<td>Hard Sound Rock</td>
<td>15 to 25</td>
<td>3.75 to 6.25</td>
<td>5</td>
</tr>
<tr>
<td>Weathered or Broken Bedrock</td>
<td>Medium Hard Rock</td>
<td>8 to 12</td>
<td>2 to 3</td>
<td>2.5</td>
</tr>
</tbody>
</table>

We also calculated the ultimate bearing pressure of the rock using methods in Wyllie, 1999 based on the Hoek-Brown Failure Criterion for the rock mass. We estimated an ultimate bearing capacity ranging from 1.5 to 3 tsf.

74911/Appendix D
Copyright 2006 Kleinfeld, Inc.
Additionally, we completed an estimate of the bearing capacity based on bearing capacity theory (for soil). We assumed a friction angle of 35 degrees and cohesion of zero. Based on our calculations, the ultimate bearing capacity is approximately 12.0 tsf.

It appears reasonable to use a value of 10 tsf for the ultimate rock bearing capacity. The ultimate bearing capacity in sheared rock should be limited to 2.5 tsf.

One important consideration is that the values above are for “flat” ground where the distance of the footing from the top of a cut slope is greater than six times the width of the footing. If the distance is less, the ultimate bearing capacity would be lowered based on the slope geometry and distance. Alternatively, drilled piers can be used to support these foundations.
Backwall Cut Slope

Dip = 90°
Direction = 222°
Friction = 30°

Sidewall Cut Slope

Dip = 90°
Direction = 132°
Friction = 30°
Soil Test Results

<table>
<thead>
<tr>
<th>Lab Sample</th>
<th>Description of Soil and/or Sediment</th>
<th>pH</th>
<th>Resistivity</th>
<th>Conductivity</th>
<th>Sulfates</th>
<th>Chlorides</th>
</tr>
</thead>
<tbody>
<tr>
<td>02207-1 CRT1/LBNL K-3 @ 15'</td>
<td>6.45</td>
<td>2,449</td>
<td>[410]</td>
<td>84</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lab Sample</th>
<th>Description of Soil and/or Sediment</th>
<th>Salinity</th>
<th>Soluble Metals</th>
<th>Redox</th>
<th>Percent Moisture</th>
</tr>
</thead>
<tbody>
<tr>
<td>02207-1 CRT1/LBNL K-3 @ 15'</td>
<td></td>
<td></td>
<td></td>
<td>+328.9</td>
<td></td>
</tr>
</tbody>
</table>

Comments:

Resistivity is nearly 2,500 ohm-cm which is fair, but soil reaction (i.e., pH) is mildly acidic which does not help; both sulfate and chloride are quite low, and redox is very mild. The Cal Trans times to perforation for this soil are as follows; 18 ga steel the time to perforation is nearly 17 yrs, and for 12 ga it goes up to about 37 yrs. Also, the average pitting rate determination for ductile iron and mild steel in this soil material is approximately at 0.130 mm/yr, thus pitting to a depth of 2 mm would be about 15 yrs; and to a 4 mm depth it would be 30 yrs. Chloride is low enough that it should not have any significant corrosion impact on concrete steel reinforcement; and sulfates are low enough that there should not be any adverse impact on concrete, mortar, grout or cement. The redox value indicates the soil is only very mildly reduced, thus there should be no significant adverse impact here either. As concerns buried metals, this soil would benefit greatly from alkaline treatment in that pushing its pH up to the 7.5-8.5 range would increase the 18 ga time to perforation to >36 yrs which is more than double the native soil time. Other than alkaline treatment, to increase metals longevity any more in this soil would require further upgrading (i.e., heavier gauge or more resistant steel), and/or that other actions be taken (e.g. special engineering fill, coating steel, cathodic protection, etc.). Last, standard concrete mixes (and related materials) do not appear to be at risk in this soil based on these results.

NOTES: Methods are from following sources: extractions by Cal Trans protocols as per Cal Test 3417 (SO4), 422 (CI), and 532/643 (pH & resistivity); &/or by ASTM Vol. 4.08 & ASTM Vol. 11.01 (=EPA Methods of Chemical Analysis, or Standard Methods); pH - ASTM G 51; Spec. Cond. - ASTM D 1125; resistivity - ASTM G 57; redox - Pt probe/ISE; sulfate - extraction Title 22, detection ASTM D 516 (=EPA 375.4); chloride - extraction Title 22, detection ASTM D 512 (=EPA 325.3); sulfides - extraction by Title 22, and detection EPA 376.2 (= SMEWWW 4500-S D); cyanides - extraction by Title 22, and detection by ASTM D 4374 (=EPA 335.2).
APPENDIX F
Kleinfelder, 2006
Test Boring K-1

REFERENCE:

Weathering

- **Fresh**: No visible sign of rock material weathering; perhaps slight discoloration on major discontinuity surfaces. *Weathering Grade I.*
- **Slightly Weathered**: Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker externally than in its fresh condition. *Weathering Grade II.*
- **Moderately Weathered**: Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as coresstones. *Weathering Grade III.*
- **Highly Weathered**: More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as coresstones. *Weathering Grade IV.*
- **Completely Weathered**: All rock material is decomposed and/or disintegrated to a soil. The original mass structure is still largely intact. *Weathering Grade V.*
- **Residual Soil**: All rock material is converted to a soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported. *Weathering Grade VI.*

Strength of Intact Rock Pieces

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Field Identification</th>
<th>Approx UCS (Mpa)</th>
<th>Approx UCS (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>Extremely Weak Rock</td>
<td>Idented by thumbnail</td>
<td>0.25 - 1.0</td>
<td>50 - 150</td>
</tr>
<tr>
<td>R1</td>
<td>Very Weak Rock</td>
<td>Crumbles under firm blows with point of geological hammer</td>
<td>1.0 - 5.0</td>
<td>150 - 750</td>
</tr>
<tr>
<td>R2</td>
<td>Weak Rock</td>
<td>Can be peeled by a pocket knife, specimen can be fractured with single firm blow of geological hammer</td>
<td>5.0 - 25</td>
<td>750 - 3,500</td>
</tr>
<tr>
<td>R3</td>
<td>Moderately Strong Rock</td>
<td>Cannot be scraped or peeled with pocket knife, specimen can be fractured with single firm blow of geological hammer</td>
<td>25 - 50</td>
<td>3,500 - 7,500</td>
</tr>
<tr>
<td>R4</td>
<td>Strong Rock</td>
<td>Specimen requires more than one blow of geological hammer to fracture it</td>
<td>50 - 100</td>
<td>7,500 - 15,000</td>
</tr>
<tr>
<td>R5</td>
<td>Very Strong Rock</td>
<td>Specimen requires many blows of geological hammer to fracture it</td>
<td>100 - 250</td>
<td>15,000 - 35,000</td>
</tr>
<tr>
<td>R6</td>
<td>Extremely Strong Rock</td>
<td>Specimen can only be chipped with geological hammer</td>
<td>>250</td>
<td>>35,000</td>
</tr>
</tbody>
</table>

Discontinuity Spacing

<table>
<thead>
<tr>
<th>English</th>
<th>Metric</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Extremely close</td>
<td><1.0 in. (<20 mm)</td>
</tr>
<tr>
<td>2. Very close</td>
<td>1.0 - 2.5 in. (20 - 60 mm)</td>
</tr>
<tr>
<td>3. Close</td>
<td>2.5 - 8.0 in. (60 - 200 mm)</td>
</tr>
<tr>
<td>4. Moderately</td>
<td>8.0 in - 2.0 ft. (200 - 600 mm)</td>
</tr>
<tr>
<td>5. Wide</td>
<td>2.0 - 6.5 ft. (600 - 2,000 mm)</td>
</tr>
<tr>
<td>6. Very wide</td>
<td>6.5 - 20.0 ft. (2 - 6 m)</td>
</tr>
<tr>
<td>7. Ext. wide</td>
<td>>20.0 ft. (>6 m)</td>
</tr>
</tbody>
</table>

Aperture Width

- **Very tight**: <1.0 mm
- **Tight**: 0.1 - 0.25 mm
- **Partly open**: 0.25 - 0.5 mm
- **Open**: 0.5 - 2.5 mm
- **Moderately wide**: 2.5 - 10 mm
- **Wide**: 10 mm - 1 cm
- **Very wide**: 1 - 10 cm
- **Extremely wide**: 10 - 100 cm
- **Cavernous**: >1 m

Rock Quality Designation

- **RQD%**: Rock Quality
 - 90 - 100: Excellent
 - 75 - 90: Good
 - 50 - 75: Fair
 - 25 - 50: Poor
 - 0 - 25: Very Poor

RQD = Sum of intact Pieces / 24 inches (100 mm) Total Core Run Length

Rock Description Criteria

- **Building 50 Seismic Retrofit**
- **Lawrence Berkeley National Laboratory**
- **Berkeley, California**
<table>
<thead>
<tr>
<th>Elevation (ft.)</th>
<th>Time/Run Length</th>
<th>Recovery (%)</th>
<th>Core %</th>
<th>ROD (%)</th>
<th>Rock Description/Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>100</td>
<td>60</td>
<td>5</td>
<td></td>
<td>AGGREGATE BASE</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>76</td>
<td>>10</td>
<td></td>
<td>SILTSTONE</td>
</tr>
<tr>
<td>24</td>
<td>80</td>
<td>33</td>
<td>>10</td>
<td></td>
<td>SHALE</td>
</tr>
<tr>
<td>30</td>
<td>100</td>
<td>26</td>
<td>>10</td>
<td></td>
<td>CLAYEY SILTSTONE</td>
</tr>
</tbody>
</table>

ROCK DESCRIPTION/NOTES

- **AGGREGATE BASE:**
 - Olive gray & redbrown, very fine grained, slightly to moderately weathered, extremely weak, very closely fractured (Augered to 4-feet)

- **SILTSTONE:**
 - Olive gray & redbrown, very fine grained, slightly to moderately weathered, closely fractured, weak, iron and manganese staining on fracture faces

- **SHALE:**
 - Red brown & olive gray, moderately weathered, extremely weak, highly sheared, sandstone corestones up to 2.5" diameter

- **CLAYEY SILTSTONE:**
 - Red brown, yellow brown and gray, moderately weathered, extremely weak, moist, blocky

DISCONTINUITIES

- 4.5 tsf (pocket penetrometer)
 - Joint, 60 degrees to axis, closely spaced, smooth, undulating (JRC 4-6), thin clay infill, iron staining on joint faces, dry

- Joint, 60 degrees to axis, moderately spaced, slightly rough, undulating (JRC 6-10), dry
 - Pitcher core advanced at 400 psi
 - Shear zone, highly sheared, moist, zone extends from 6'5 to 7 feet bgs, moist

- Joint, 50 degrees to axis, 2.0 tsf, moist
 - Joint, 60 degrees to axis
 - Joint, 50 degrees to axis, closely spaced, slightly rough to smooth, undulating (JRC 6-8), no infill, partly open to open, iron and manganese staining on joint faces
 - Pitcher core advanced at 700 psi
 - Fracture, 60 degrees to axis, extremely closely spaced, smooth, undulating (JRC 4-6), thin clay infill, dry to moist
 - Pitcher core advanced at 700 psi
 - Very closely spaced fractures

- Joint, 60 degrees to axis, slightly rough to rough, undulating (JRC 6-10), no infill, dry
 - Pitcher core advanced at 700 psi
 - Fracture, 180 degrees to axis, very closely spaced, rough, undulating (JRC 6-10), tight, iron and manganese staining on fracture faces
 - Shear zone, extremely closely spaced, zone extends from 17 to 18 feet bgs

- Joint, 60 degrees to axis, smooth, undulating (JRC 2-4), no infill
 - Pitcher core advanced advanced at 800 psi
 - Joint, 50 degrees to axis, closely spaced, smooth, undulating (JRC 6-8), no infill, iron
ROCK DESCRIPTION/NOTES

SHALE:
- Dark gray, moderately weathered, very closely fractured, extremely weak, pressure facets present

SHALE:
- Dark gray, slightly weathered, very weak to weak, closely fractured

SHALE:
- Dark gray, moderately to highly weathered, extremely weak, closely fractured

DISCONTINUITIES

- Staining on joint surfaces
- Pitcher core practical refusal, switched to NQ
- Diamond core at 21 feet bgs
- Core rate 4 min/ft
- Fracture, 20 and 50 degrees to axis, very closely spaced, smooth to slickensides (JRC 2-4), tight, clay infill, iron and manganese staining
- Core rate 4 min/ft
- Core rate 4 min/ft
- Core rate 3 min/ft
- Joint, 60 degrees to axis, closely spaced, slightly rough to smooth, undulating (JRC 8-10), tight, no infill, iron staining on joint faces
- Core rate 3 min/ft
- Core rate 4 min/ft at 400 psi
- Joint, 60 degrees to axis, closely spaced, rough to very rough (JRC 18-20)
- Core rate 3 min/ft
- Core rate 4 min/ft
- Core rate 3 min/ft
- Joint, 60 degrees to axis, smooth (JRC 2-4), no infill
- Shear zone, 30 to 50 degrees to axis, extremely closely spaced, smooth to slickensides (JRC 2-4), thin clay infill, iron staining and pressure facets on shears, shear zone extends from 31 to 36 feet bgs
- Core rate 3 min/ft
- Core rate 4 min/ft
- Joint, 50 degrees to axis, closely spaced, smooth (JRC 2-4)
- Core rate 4 min/ft
- Core rate 5 min/ft
- Shear Zone, extremely closely spaced, slickensides, wet, shear zone extends from 41 to 43 feet bgs
- Core rate 5 min/ft
- Core rate 5 min/ft
<table>
<thead>
<tr>
<th>Elevation (ft.)</th>
<th>Depth (feet)</th>
<th>Time/Core Run</th>
<th>Length (in.)</th>
<th>Recovery (%)</th>
<th>Fractures per foot</th>
</tr>
</thead>
<tbody>
<tr>
<td>705</td>
<td>60</td>
<td>100</td>
<td>6</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>60</td>
<td>100</td>
<td>30</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>695</td>
<td>60</td>
<td>100</td>
<td>18</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>690</td>
<td>60</td>
<td>100</td>
<td>10</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>685</td>
<td>60</td>
<td>100</td>
<td>10</td>
<td>>10</td>
<td></td>
</tr>
<tr>
<td>680</td>
<td>60</td>
<td>100</td>
<td>10</td>
<td>>10</td>
<td></td>
</tr>
</tbody>
</table>

ROCK DESCRIPTION/NOTES

- **SANDSTONE:**
 - light gray, slightly to moderately weathered, very weak, closely fractured

- **SANDSTONE:**
 - gray, highly to completely weathered, very closely fractured, extremely weak

- **SHALE:**
 - dark gray, moderately weathered, weak, closely fractured

- **SHALE:**
 - dark gray, highly weathered, extremely weak, pervasively sheared

- **SHALE:**
 - dark gray, moderately weathered, extremely weak, extremely closely sheared

DISCONTINUITIES

- **Joint, 50 degrees to axis, closely spaced, smooth, undulating (JRC 4-6):**
 - tight, no infill, dry
 - Core rate 4 min/ft
 - Core rate 5 min/ft

- **Joint, 40 degrees to axis, closely spaced, smooth (JRC 4-6):**
 - Core rate 5 min/ft

- **Shear Zone, extremely closely spaced, slickensides, moist zone extends from 46 to 49 feet bgs:**
 - Core rate 6 min/ft
 - Core rate 2 min/ft

- **Joint, 15 degrees to axis, rough, undulating (JRC 10-12), no infill, dry:**
 - Core rate 3 min/ft
 - Core rate 2 min/ft

- **Shear zone, extremely closely spaced, slickensides, shear zone extends from 51 to 52.5 feet bgs:**
 - Core rate 1 min/ft
 - Core rate 2 min/ft
 - Core rate 2 min/ft

- **Shear zone, extremely closely spaced, slickensides, shear zone extends from 55.5 to 58 feet bgs:**
 - Core rate 2 min/ft
 - Core rate 2 min/ft

- **Shear, 30 degrees to axis, very closely spaced, rough, undulating (JRC 10-12), clay infill, slickensides on shear faces:**
 - Core rate 2 min/ft

Boring completed at a depth of approximately 61 feet below existing site grade.
Fugro, 2002
Test Boring B-1 and B-2

REFERENCE:

Fugro West, Inc., Geotechnical Investigation, Proposed Building 50X, Lawrence Berkeley National Laboratory, Berkeley, California (FW 658.052) bound report dated August 5, 2002
<table>
<thead>
<tr>
<th>COARSE-GRAINED SOILS</th>
<th>FINE-GRAINED SOILS</th>
<th>HIGHLY ORGANIC SOILS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAJOR DIVISIONS</td>
<td>GROUP NAMES</td>
<td></td>
</tr>
<tr>
<td>GRAVELS</td>
<td>GW</td>
<td>Well-graded gravel, Well-graded gravel with sand</td>
</tr>
<tr>
<td></td>
<td>GP</td>
<td>Poorly graded gravel, Poorly graded gravel with sand</td>
</tr>
<tr>
<td></td>
<td>GM</td>
<td>Silty gravel, Silty gravel with sand</td>
</tr>
<tr>
<td></td>
<td>GC</td>
<td>Clayey gravel, Clayey gravel with sand</td>
</tr>
<tr>
<td>SANDS</td>
<td>SW</td>
<td>Well-graded sand, Well-graded sand with gravel</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>Poorly graded sand, Poorly graded sand with gravel</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>Silty sand, Silty sand with gravel</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>Clayey sand, Clayey sand with gravel</td>
</tr>
<tr>
<td>SILTS AND CLAYS</td>
<td>ML</td>
<td>Silt, Silt with sand or gravel, Sandy or gravelly silt, Sandy or gravelly silt with sand or gravel</td>
</tr>
<tr>
<td>Liquid Limit Less than 50%</td>
<td>CL</td>
<td>Lean clay, Lean clay with sand or gravel, Sandy or gravelly lean clay, Sandy or gravelly lean clay with sand or gravel</td>
</tr>
<tr>
<td></td>
<td>OL</td>
<td>Organic silt or clay, Organic silt or clay with sand or gravel, Sandy or gravelly organic silt or clay, Sandy or gravelly organic silt or clay with sand or gravel</td>
</tr>
<tr>
<td></td>
<td>MH</td>
<td>Elastic silt, Elastic silt with sand or gravel, Sandy or gravelly elastic silt, Sandy or gravelly elastic silt with sand or gravel</td>
</tr>
<tr>
<td>SILTS AND CLAYS</td>
<td>CH</td>
<td>Fat clay, Fat clay with sand or gravel, Sandy or gravelly fat clay, Sandy or gravelly fat clay with sand or gravel</td>
</tr>
<tr>
<td>Liquid Limit Greater than 50%</td>
<td>OH</td>
<td>Organic silt or clay, Organic silt or clay with sand or gravel, Sandy or gravelly organic silt or clay, Sandy or gravelly organic silt or clay with sand or gravel</td>
</tr>
<tr>
<td>HIGHLY ORGANIC SOILS</td>
<td>PT</td>
<td>Peat</td>
</tr>
</tbody>
</table>

For definition of dual and borderline symbols, see ASTM D2487-93.

KEY TO TEST DATA AND SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perm</td>
<td>Permeability</td>
</tr>
<tr>
<td>Consol</td>
<td>Consolidation</td>
</tr>
<tr>
<td>LL</td>
<td>Liquid Limit</td>
</tr>
<tr>
<td>PI</td>
<td>Plasticity Index</td>
</tr>
<tr>
<td>Gs</td>
<td>Specific Gravity</td>
</tr>
<tr>
<td>MA</td>
<td>Particle Size Analysis</td>
</tr>
<tr>
<td>-200</td>
<td>Percent Passing No. 200 Sieve</td>
</tr>
<tr>
<td>ND</td>
<td>Not Detected</td>
</tr>
<tr>
<td>Tube Sample</td>
<td></td>
</tr>
<tr>
<td>Bag or Bulk Sample</td>
<td></td>
</tr>
<tr>
<td>Lost Sample</td>
<td></td>
</tr>
<tr>
<td>First Groundwater</td>
<td></td>
</tr>
<tr>
<td>Stabilized Groundwater</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shear Strength (psf)</th>
<th>Confining Pressure (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TxUU 3200</td>
<td>(2800) Unconsolidated-Undrained Triaxial Shear</td>
</tr>
<tr>
<td>TxCU 3200</td>
<td>(2800) Consolidated-Undrained Triaxial Shear</td>
</tr>
<tr>
<td>TxCD 3200</td>
<td>(2500) Consolidated-Drained Triaxial Shear</td>
</tr>
<tr>
<td>SsCU 3200</td>
<td>(2800) Consolidated-Undrained Simple Shear</td>
</tr>
<tr>
<td>SsCD 3200</td>
<td>(2800) Consolidated-Drained Simple Shear</td>
</tr>
<tr>
<td>DscD 2700</td>
<td>(2000) Consolidated-Drained Direct Shear</td>
</tr>
<tr>
<td>UC 470</td>
<td>Unconfined Compression</td>
</tr>
<tr>
<td>LVS 700</td>
<td>Laboratory Vane Shear</td>
</tr>
<tr>
<td>FV 300</td>
<td>Field Vane Shear</td>
</tr>
<tr>
<td>RfV 300</td>
<td>Torvane Shear</td>
</tr>
<tr>
<td>TV 800</td>
<td>Pocket Penetrometer (actual reading divided by 2)</td>
</tr>
<tr>
<td>PP 400</td>
<td></td>
</tr>
</tbody>
</table>

PLATE A1
BEDDING OF SEDIMENTARY ROCKS

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Bed thickness in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very thick-bedded</td>
<td>Greater than 4.0</td>
<td></td>
</tr>
<tr>
<td>Thick-bedded</td>
<td>2.0 to 4.0</td>
<td></td>
</tr>
<tr>
<td>Thin-bedded</td>
<td>0.2 to 2.0</td>
<td></td>
</tr>
<tr>
<td>Very thin-bedded</td>
<td>0.05 to 0.2</td>
<td></td>
</tr>
<tr>
<td>Laminated</td>
<td>0.01 to 0.05</td>
<td></td>
</tr>
<tr>
<td>Thinly laminated</td>
<td>less than 0.01</td>
<td></td>
</tr>
</tbody>
</table>

FRACTURING

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Size of pieces in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very little fractured</td>
<td>Greater than 4.0</td>
<td></td>
</tr>
<tr>
<td>Occasionally fractured</td>
<td>1.0 to 4.0</td>
<td></td>
</tr>
<tr>
<td>Moderately fractured</td>
<td>0.5 to 1.0</td>
<td></td>
</tr>
<tr>
<td>Closely fractured</td>
<td>0.1 to 0.5</td>
<td></td>
</tr>
<tr>
<td>Intensely fractured</td>
<td>0.05 to 0.1</td>
<td></td>
</tr>
<tr>
<td>Crushed</td>
<td>less than 0.05</td>
<td></td>
</tr>
</tbody>
</table>

HARDNESS

- **Soft**: reserved for plastic material alone.
- **Low hardness**: can be gouged deeply or carved easily with a knife blade.
- **Moderately hard**: can be readily scratched by a knife blade; scratch leaves a heavy trace of dust and is readily visible after the powder has been blown away.
- **Hard**: can be scratched with difficulty; scratch produces little powder and is often faintly visible.
- **Very hard**: cannot be scratched with knife blade; leaves a metallic streak.

STRENGTH

- **Plastic**: very low strength.
- **Friable**: crumbles easily by rubbing with fingers.
- **Weak**: an unfractured specimen of such material will crumble under light hammer blows.
- **Moderately strong**: specimen will withstand a few heavy hammer blows before breaking.
- **Strong**: specimen will withstand a few heavy ringing hammer blows and will yield with difficulty only dust and small flying fragments.
- **Very strong**: specimen will resist heavy ringing hammer blows and will yield with difficulty only dust and small flying fragments.

WEATHERING

- **Deep**: moderate to complete mineral decomposition, extensive disintegration, deep and thorough discoloration, many fractures, all extensively coated or filled with oxides, carbonates and/or clay or silt.
- **Moderate**: slight change or partial decomposition of minerals; little disintegration; cementation little to unaffected. Moderate to occasionally intense discoloration. Moderately coated fractures.
- **Little**: no megascopic decomposition of minerals; little or no effect on normal cementation. Slight and intermittent, or localized discoloration. Few stains on fracture surfaces.
- **Fresh**: unaffected by weathering agents. No disintegration or discoloration. Fractures usually less numerous than joints.
LOG OF BORING

Project Name & Location: Building 50X
Berkeley, California

Ground Surface Elevation: 700 feet

Elevation Datum:
LBL Project Datum:

<table>
<thead>
<tr>
<th>Drilling Coordinates:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drilling Company & Driller:</td>
</tr>
</tbody>
</table>
| Rig Type & Drilling Method: | Mobile 51, Hollow Stem Auger
| Sampler Type: | A) Modified California (3" O.D., 2.5" I.D.)
| Type(s): | B) SPT (2" O.D., 1.4" I.D.)
| Sampling Method(s): | A) 140 lb hammer with 30" drop (Wireline)
| B) 140 lb hammer with 30" drop (Wireline) |
| Drilling Fluid: | NA
| Hole Diameter: | 6.5"
| Logged By: | AF
| Start: Date | 4/27/02
| Time | 09:00 |
| Finish: Date | 4/27/02 | 10:45
| Backfill Method: | Cement Grout
| Date | 4/27/02 |

SOIL DESCRIPTIONS

Depth (feet)
<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sampler Type</th>
<th>Blows/6 inches of pressure</th>
<th>Blows/12 inches</th>
<th>Sample Interval</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>15</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>12</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>15</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>12</td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td>28</td>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>A</td>
<td>30</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>B</td>
<td>17</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>B</td>
<td>50/4"</td>
<td>50/4"</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group Name (Group Symbol):
| Artist | Name | Symbol | Type | Group Symbol | Description | Moisture Content (%) | Dry Density (pcf) | Other |
|--------|------|--------|------|--------------|-------------|----------------------|-------------------|-------|-------|
| ASPHALTIC CONCRETE | 3 | INCHES THICK | GRAVELLY LEAN CLAY (CL) | Dark brown, soft, moist (55) | 13.9 | 92 |
| GRAVELLY LEAN CLAY (CL) | Brown, stiff to very stiff, moist | 15.1 | 102 |
| SANDSTONE | Brown, intensely to moderately fractured, low to moderately hard, friable, moderate to deep weathering | 21.6 | 102 | TxEU = 2630 psf
| PP = 3250 psf |

Trace reddish brown sandstone fragments
Gray clay filled seams
Color change to brownish gray at 29.0'
Hard drilling at 32.0'
Refusal at 33.0'
Bottom of boring at 33.4 feet below ground surface.

Notes:
Groundwater not encountered during drilling.
LOG OF BORING

Project Name & Location: Building 50X
Berkeley, California

Ground Surface Elevation: 646 feet

Elevation Datum: LBL Project Datum

Drilling Coordinates:

Drilling Company & Driller: Gregg Jason/Lou

Rig Type & Drilling Method: Mobile 61, Hollow Stem Auger

Sampler Type(s): A) Modified California (3" O.D., 2.5" I.D.)
B) SPT (2" O.D., 1.4" I.D.)

Sampling Method(s): A) 140 lb hammer with 30° drop (Wireline)
B) 140 lb hammer with 30° drop (Wireline)

Logged By: AF

Backfill Method: Cement Grout
Date: 4/27/02

SOIL DESCRIPTIONS

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Sampler Type</th>
<th>Blows/6 inches</th>
<th>Blows/12 inches</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>3</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>30</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>A</td>
<td>91</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>A</td>
<td>50/6"</td>
<td>50/6"</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>B</td>
<td>22</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>B</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>B</td>
<td>50/4"</td>
<td>50/4"</td>
<td></td>
</tr>
</tbody>
</table>

LABORATORY DATA

<table>
<thead>
<tr>
<th>Moisture Content (%)</th>
<th>Dry Density (g/cc)</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>16.7</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>18.4</td>
<td>104</td>
<td>7xUU = 1740 psf</td>
</tr>
<tr>
<td>10.5</td>
<td>111</td>
<td>PP = 2000 psf</td>
</tr>
<tr>
<td>18.4</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>121</td>
<td></td>
</tr>
</tbody>
</table>

Bottom of boring at 24 feet below ground surface.

Notes:
Groundwater not encountered during drilling.

FUGRO WEST, INC.
1000 Broadway, Suite 203, Oakland, California 94607
Tel: (510) 268-0481, Fax: (510) 268-0137

Building 50X
Berkeley, California

JOB NUMBER 658.052
DATE 6/02

BORING B-2
SCI, 1992
Test Boring B-1

REFERENCE:

Subsurface Consultants, Inc., *Geotechnical Investigation, Acid Neutralization Tank Enclosure, Building 70a, Lawrence Berkeley Laboratory, Berkeley, California* (SCI 658.007) letter report dated March 30, 1992
LOG OF TEST BORING 1

<table>
<thead>
<tr>
<th>DEPTH (FEET)</th>
<th>SAMPLE</th>
<th>BLOWS PER FOOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ORANGE BROWN CLAYEY SILT (CL-ML)
stiff, moist, some gravel

DRAIN ROCK
hole abandoned because of caving

UC = Unconfined Compressive Shear Strength (psf)

SAMPLER TYPES:
- **CALIFORNIA DRIVE**
 - I.D.: 2.5 inches
 - O.D.: 2.0 inches
 - *STANDARD PENETRATION TEST*
 - O.D.: 2.0 inches
 - I.D.: 1.4 inches

HAMMER WEIGHT: 70 pounds
HAMMER DROP: 30 inches

LOG OF TEST BORING 1A

<table>
<thead>
<tr>
<th>DEPTH (FEET)</th>
<th>SAMPLE</th>
<th>BLOWS PER FOOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>48/6**</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>60/4**</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>50/6**</td>
<td></td>
</tr>
</tbody>
</table>

DARK BROWN SILTY CLAY (CL)
medium stiff, moist

LIGHT BROWN SANDY CLAY (CL)
stiff, moist

GRAY BROWN SANDSTONE
fractured, fine grained, weathered, soft, friable

auger refusal at 11 feet
<table>
<thead>
<tr>
<th>GENERAL SOIL CATEGORIES</th>
<th>SYMBOLS</th>
<th>TYPICAL SOIL TYPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRAVEL</td>
<td>GW, GP, GM, GC, SW, SP, SM, SC</td>
<td>Clean Gravel with little or no fines, Gravel with more than 12% fines, Clean sand with little or no fines, Sand with more than 12% fines</td>
</tr>
<tr>
<td>COARSE GRAINED SOILS</td>
<td>More than half coarse fraction is larger than No. 200 sieve</td>
<td></td>
</tr>
<tr>
<td>FINE GRAINED SOILS</td>
<td>More than half is smaller than No. 200 sieve</td>
<td></td>
</tr>
</tbody>
</table>

UNIFIED SOIL CLASSIFICATION SYSTEM

Subsurface Consultants

LBL ACID TANK ENCLOSURE - BERKELEY, CA

JOB NUMBER 658.007
DATE 3/30/32
APPROVED SL
BEDDING OF SEDIMENTARY ROCKS

<table>
<thead>
<tr>
<th>Description</th>
<th>Bed thickness in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very thick-bedded</td>
<td>Greater than 4.0</td>
</tr>
<tr>
<td>Thick-bedded</td>
<td>2.0 to 4.0</td>
</tr>
<tr>
<td>Thin-bedded</td>
<td>0.2 to 2.0</td>
</tr>
<tr>
<td>Very thin-bedded</td>
<td>0.05 to 0.2</td>
</tr>
<tr>
<td>Laminated</td>
<td>0.01 to 0.05</td>
</tr>
<tr>
<td>Thinly laminated</td>
<td>less than 0.01</td>
</tr>
</tbody>
</table>

FRACTURING

<table>
<thead>
<tr>
<th>Description</th>
<th>Size of pieces in feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very little fractured</td>
<td>Greater than 4.0</td>
</tr>
<tr>
<td>Occasionally fractured</td>
<td>1.0 to 4.0</td>
</tr>
<tr>
<td>Moderately fractured</td>
<td>0.5 to 1.0</td>
</tr>
<tr>
<td>Closely fractured</td>
<td>0.1 to 0.5</td>
</tr>
<tr>
<td>Intensely fractured</td>
<td>0.05 to 0.1</td>
</tr>
<tr>
<td>Crushed</td>
<td>less than 0.05</td>
</tr>
</tbody>
</table>

HARDNESS

- Soft: reserved for plastic material alone.
- Low hardness: can be gouged deeply or carved easily with a knife blade.
- Moderately hard: can be readily scratched by a knife blade; scratch leaves a heavy trace of dust and is readily visible after the powder has been blown away.
- Hard: can be scratched with difficulty; scratch produces little powder and is often faintly visible.
- Very hard: cannot be scratched with knife blade; leaves a metallic streak.

STRENGTH

- Plastic: very low strength.
- Friable: crumbles easily by rubbing with fingers.
- Weak: an unfractured specimen of such material will crumble under light hammer blows.
- Moderately strong: specimen will withstand a few heavy hammer blows before breaking.
- Strong: specimen will withstand a few heavy ringing hammer blows and will yield with difficulty only dust and small flying fragments.
- Very strong: specimen will resist heavy ringing hammer blows and will yield with difficulty only dust and small flying fragments.

WEATHERING

- Deep: moderate to complete mineral decomposition, extensive disintegration, many fractures, all extensively coated or filled with oxides, carbonates and/or clay or silt.
- Moderate: slight change or partial decomposition of minerals, little disintegration; cementation little to unaffected. Moderate to occasionally intense discoloration. Moderately coated fractures.
- Little: no megascopic decomposition of minerals; little or no effect on normal cementation. Slight and intermittent, or localized discoloration. Few stains on fracture surfaces.
- Fresh: unaffected by weathering agents. No disintegration or discoloration. Fractures usually less numerous than joints.
GRC, 1990
Test Borings B-1 through B-3

REFERENCE:

Geo/Resource Consultants, Inc., Proposed Air Handling Units (AHU), South of Building 70A, Lawrence Berkeley Laboratory, Berkeley, California (GRC 1574-00-0) bound report dated May 22, 1990
<table>
<thead>
<tr>
<th>Laboratory Analyses</th>
<th>Blows/ft</th>
<th>Moisture Content (%)</th>
<th>Dry density (pcf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qu/2 = 4979 psf</td>
<td>50</td>
<td>12.2</td>
<td>115.0</td>
</tr>
<tr>
<td>DS/CU</td>
<td>35/6"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG OF BORING B-1

Equipment: Solid Flight Auger
Elevation: ~ 730 ft.
Date: 4/5/90

BROWN SANDY CLAY (CL)
hard, with sandstone fragments,
shale fragments, iron staining

BROWN SILTSTONE
soft, friable, severely weathered,
intensely fractured

grades to moderately weathered @ 14 ft.

grades to moderately hard, moderately strong,
moderately weathered, intensely fractured to crushed

GRAY SHALE
soft, weak, slightly weathered,
crushed; contains slickensides

Boring Terminated @ 26 ft.
No groundwater was encountered during drilling

Blowcount is penetration resistance of California Modified Sampler driven by a 140 lbs hammer falling 30 inches.
<table>
<thead>
<tr>
<th>Laboratory Analyses</th>
<th>Blows/ft.</th>
<th>Moisture Content (%)</th>
<th>Dry density (pcf)</th>
<th>Depth (ft.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL = 21</td>
<td>22</td>
<td>12.5</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>LL = 31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI = 10</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>=3400 psf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LOG OF BORING B-2

Equipment Solid Flight Auger

Elevation ~ 730 ft. **Date** 4/5/90

BROWN SANDY CLAY (CL)
moist, very stiff, with sandstone fragments
occasional shale fragments, iron staining

BROWN SILTSTONE
moderately hard, moderately strong,
moderately weathered, closely fractured

Refusal @ 7 ft.
Boring Terminated @ 7 ft.
No groundwater was encountered during drilling

Blowcount is penetration resistance of California Modified Sampler driven by a 140 lbs hammer falling 30 inches.

Geo/Resource Consultants, Inc.
Geologists / Engineers / Environmental Scientists

Job No. 1574-000-0 Appr: Date 4/10/90

LOG OF BORING B-2
LBL ADDITION A.H.U.
LAWRENCE BERKELEY LABORATORY
BERKELEY, CALIFORNIA

FIGURE

4
<table>
<thead>
<tr>
<th>Depth (ft.)</th>
<th>Moisture Content (%)</th>
<th>Dry Density (pcf)</th>
<th>Laboratory Analyses</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>BROWN SANDY CLAY (CL)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>very stiff, with sandstone fragments,</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>occasional shale fragments</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>grades to very hard @ 5 ft.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>GRAY SILTSTONE</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>soft, weak, moderately weathered,</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>intensely fractured</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>hit boulder @ 9 ft - 9.5 ft.</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td>grades very soft, friable, severely weathered</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>GRAY SHALE</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>soft, weak, moderately weathered</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td>crushed</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>Boring Terminated @ 26 ft.</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td>No groundwater was encountered during drilling</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Blowcount is penetration resistance of California Modified Sampler driven by a 140 lbs hammer falling 30 inches.
Log of Boring B-3

Equipment: Solid Flight Auger
Elevation: ~ 730 ft.
Date: 4/5/90

<table>
<thead>
<tr>
<th>Laboratory Analyses</th>
<th>Blows/ft.</th>
<th>Moisture Content (%)</th>
<th>Dry Density (pcf)</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL = 24, LL = 40, PI = 16</td>
<td>16</td>
<td>12.3</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>Qu/2 = 4392 psf</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45/6"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>55/6"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60/6"</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **BROWN SANDY CLAY (CL)** moist, stiff, contains siltstone fragments
 - grades to very stiff @ 5 ft.
 - grades to hard @ 8.5 ft.

- **BROWN Siltstone** soft, weak to moderately strong, moderately weathered, intensely fractured
 - becomes gray, moderately hard, moderately strong, slightly weathered
 - grades to gray shalestone @ 19 ft.

- **Boring Terminated @ 21 ft.**
 - No groundwater was encountered during drilling

Blowcount was obtained by 140 lbs. hammer, falling 30 inches, and S & H Sampler.

GeoResource Consultants, Inc.
Geologists / Engineers / Environmental Scientists

Job No. 1574-000-0
Appr.:
Date: 4/10/90

LOG OF BORING B-3
LBL ADDITION A.H.U.
LAWRENCE BERKELEY LABORATORY
BERKELEY, CALIFORNIA
FIGURE 6
Unified Soil Classification System

<table>
<thead>
<tr>
<th>Major Divisions</th>
<th>Soil Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravels</td>
<td></td>
</tr>
<tr>
<td>Over half of coarse fraction larger than No. 4 sieve</td>
<td>- GW: Well Graded Gravels, Gravel-Sand Mixtures</td>
</tr>
<tr>
<td></td>
<td>- GP: Poorly Graded Gravels, Gravel-Sand Mixtures</td>
</tr>
<tr>
<td></td>
<td>- GM: Silty Gravels, Poorly Graded Gravel-Sand-Silt Mixtures</td>
</tr>
<tr>
<td></td>
<td>- GC: Clayey Gravels, Poorly Graded Gravel-Sand-Clay Mixtures</td>
</tr>
<tr>
<td></td>
<td>- SW: Well Graded Sands, Gravely Sands</td>
</tr>
<tr>
<td></td>
<td>- SP: Poorly Graded Sands, Gravely Sands</td>
</tr>
<tr>
<td></td>
<td>- SM: Silty Sands, Poorly Graded Sand-Silt Mixtures</td>
</tr>
<tr>
<td></td>
<td>- SC: Clayey Sands, Poorly Graded Sand-Clay Mixtures</td>
</tr>
<tr>
<td>Sands</td>
<td></td>
</tr>
<tr>
<td>Over half of coarse fraction finer than No. 4 sieve</td>
<td>- ML: Silts, Very Fine Sands, Silty or Clayey Fine Sands</td>
</tr>
<tr>
<td></td>
<td>- CL: Low Plasticity Clays, Sandy or Silty Clays</td>
</tr>
<tr>
<td></td>
<td>- OL: Low Plasticity Organic Silts and Clays</td>
</tr>
<tr>
<td></td>
<td>- MH: Micaeous or Diatomaceous Silts, Volcanic Ash, Elastic Silts</td>
</tr>
<tr>
<td></td>
<td>- CH: High Plasticity Clays - Fat Clays</td>
</tr>
<tr>
<td></td>
<td>- OH: High Plasticity Organic Silts and Clays</td>
</tr>
<tr>
<td></td>
<td>- Pt: Peat and Other Fibrous Organic Soils</td>
</tr>
</tbody>
</table>

Key to Samples

- **"Undisturbed" 2.5" sample**
- **Disturbed Sample**
- Indicates depth of sampling with no recovery
- Indicates depth and location of coring run
- Indicates depth of Standard Penetration Test and 2" sample

Key to Test Data

- **Shear Strength, psf**
- **Confining Pressure or Normal Load, psf**

<table>
<thead>
<tr>
<th>Test Code</th>
<th>Test Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TgUU</td>
<td>Unconsolidated Undrained Triaxial</td>
</tr>
<tr>
<td>TgCU</td>
<td>Consolidated Undrained Triaxial</td>
</tr>
<tr>
<td>TgCD</td>
<td>Consolidated Drained Triaxial</td>
</tr>
<tr>
<td>DS</td>
<td>Direct Shear</td>
</tr>
<tr>
<td>UC</td>
<td>Unconfined Compression</td>
</tr>
<tr>
<td>FVS</td>
<td>Field Vane Shear</td>
</tr>
<tr>
<td>FP</td>
<td>Field Penetrometer</td>
</tr>
<tr>
<td>PI</td>
<td>Plasticity Index</td>
</tr>
<tr>
<td>C</td>
<td>Consolidation Test</td>
</tr>
</tbody>
</table>

Geo/Resource Consultants, Inc.

Consulting Engineers, Geologists, Geophysicists

Job No.: 1574-00-0 Appr.: JY Date: 4/18/90
HLA, 1983
Test Borings 1.165 through 4.165

REFERENCE:

Harding Lawson Associates, *Geotechnical Investigation, Building 50F, Office Addition, Lawrence Berkeley Laboratory, Berkeley, California*, (HLA 2000,165.01) bound report dated March 1, 1983
<table>
<thead>
<tr>
<th>Laboratory Tests</th>
<th>Blows/foot</th>
<th>Moisture Content (%)</th>
<th>Dry Density (pcf)</th>
<th>Core Recovery (%)</th>
<th>Cored Interval</th>
<th>Depth (ft)</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11.6</td>
<td>123</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

TXUU = 1800 psf @ 720 psf

<table>
<thead>
<tr>
<th>Equipment</th>
<th>6" Flight Auger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevation</td>
<td>702 Feet</td>
</tr>
<tr>
<td>Date</td>
<td>11/1/82</td>
</tr>
</tbody>
</table>

2" ASPHALT, 6" BASE
GRAY SHALE
intensely fractured, soft, weak
moderately weathered, sheared
with abundant clay fracture
fillings

change to moderately hard,
moderately strong

auger refusal at 24'

(water level not stabilized
prior to backfilling)
Laboratory Tests

<table>
<thead>
<tr>
<th>Blows/foot</th>
<th>Moisture Content (%)</th>
<th>Dry Density (pcf)</th>
<th>Core Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TXUU = 3120 psf @ 720 psf

Equipment: 6" Flight Auger

Elevation: 701 Feet
Date: 11/1/82

4" ASPHALT
8" SANDY CLAY SUBBASE
DARK BROWN CLAY (CL)
very stiff, moist,
(weathered rock)

BROWN SHALE
intensely fractured, low
hardness, weak, highly
weathered

color change to gray

change to moderately hard,
moderately strong, little
weathered

change to low hardness, weak
between 23' and 26'

auger refusal at 29.5'

(no free water encountered)
Laboratory Tests

Blows/foot	Moisture Content (%)	Density (pcf)	Core Recovery (%)	Cored Interval	Sample Depth (ft)	Sample
TXUU = 3420 psf @ 720 psf | 8.5 | 127 | |

Equipment 6" Flight Auger

Elevation 701.5 Feet Date 11/1/82

4" ASPHALT

8" BROWN SANDY CLAY FILL
MOTTLED GRAY-BROWN SHALE
intensely fractured, soft, weak, little weathered with clay-filled fractures

water level 11/1/82
change to gray, low hardness, little weathered

change to moderately fractured, moderately hard, moderately strong, dry

auger refusal at 25.3'

TXUU = 4150 psf @ 720 psf | 10.5 | 130 |

Harding Lawson Associates
Engineers, Geologists & Geophysicists

Log of Boring 3.165
Building 50F
Lawrence Berkeley Laboratory
Berkeley, California

PLATE 4

DRAWN: J. Weitzel 2000,185.01
APPROVED: LEL 1/83
REVISED: DATE:
<table>
<thead>
<tr>
<th>Laboratory Tests</th>
<th>Blows/foot</th>
<th>Moisture Content (%)</th>
<th>Dry Density (pcf)</th>
<th>Core Recovery (%)</th>
<th>Cored Interval</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>13.6</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TXUU = 8250 psf</td>
<td></td>
<td>11.7</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 720 psf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" ASPHALT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROWN CLAY (CL)</td>
<td></td>
<td>very stiff, dry, with</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>abundant weathered rock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>fragments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROWN SHALE</td>
<td></td>
<td>intensely fractured, low</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hardness, weak, highly</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>weathered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>change to moderately hard,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>moderately strong, little</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>weathered</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>color change to gray</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>auger refusal at 28'</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(no free water encountered)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Equipment 6" Flight Auger

Elevation 709 Feet **Date** 11/1/82
Unified Soil Classification System

<table>
<thead>
<tr>
<th>Major Divisions</th>
<th>Typical Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravels</td>
<td></td>
</tr>
<tr>
<td>More than half coarse fraction is larger than No. 4 sieve size</td>
<td>Well graded gravels, gravel-sand mixtures</td>
</tr>
<tr>
<td>Gravels with over 12% fines</td>
<td>Poorly graded gravels, gravel-sand mixtures</td>
</tr>
<tr>
<td>Sands</td>
<td></td>
</tr>
<tr>
<td>More than half coarse fraction is smaller than No. 4 sieve size</td>
<td>Silty gravels, poorly graded gravel-sand mixtures</td>
</tr>
<tr>
<td>Sands with over 12% fines</td>
<td>Clayey gravels, poorly graded gravel-sand mixtures</td>
</tr>
<tr>
<td>Silts and Clays</td>
<td></td>
</tr>
<tr>
<td>Liquid limit less than 50</td>
<td>Inorganic silts and very fine sands, rock flour, silty or clayey fine sands, or clayey silts with slight plasticity</td>
</tr>
<tr>
<td>Silts and Clays</td>
<td></td>
</tr>
<tr>
<td>Liquid limit greater than 50</td>
<td>Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays</td>
</tr>
<tr>
<td>Highly Organic Soils</td>
<td>Organic clays and organic silty clays of low plasticity</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key to Test Data

- **Consol** — Consolidation
- **LL** — Liquid Limit (in %)
- **PL** — Plastic Limit (in %)
- **Gs** — Specific Gravity
- **SA** — Sieve Analysis
- **†** — "Undisturbed" Sample
- **☐** — Bulk Sample

<table>
<thead>
<tr>
<th>Shear Strength, psi</th>
<th>Confining Pressure, psi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx</td>
<td>(2600)</td>
</tr>
<tr>
<td>Tx,CU</td>
<td>(2600)</td>
</tr>
<tr>
<td>DS</td>
<td>(2000)</td>
</tr>
<tr>
<td>FVS</td>
<td>470</td>
</tr>
<tr>
<td>UC</td>
<td>2000</td>
</tr>
<tr>
<td>LVS</td>
<td>700</td>
</tr>
</tbody>
</table>

- *Tc* — Unconsolidated Undrained Triaxial
- *Tc,U* — Consolidated Undrained Triaxial
- *DS* — Consolidated Drained Direct Shear
- *FVS* — Field Vane Shear
- *UC* — Unconfined Compression
- *LVS* — Laboratory Vane Shear
I CONSOLIDATION OF SEDIMENTARY ROCKS; usually determined from unweathered samples. Largely dependent on cementation.

U = unconsolidated
P = poorly consolidated
M = moderately consolidated
W = well consolidated

II BEDDING OF SEDIMENTARY ROCKS

<table>
<thead>
<tr>
<th>Splitting Property</th>
<th>Thickness</th>
<th>Stratification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massive</td>
<td>Greater than 4.0 ft.</td>
<td>very thick bedded</td>
</tr>
<tr>
<td>Blocky</td>
<td>2.0 to 4.0 ft.</td>
<td>thick-bedded</td>
</tr>
<tr>
<td>Slabby</td>
<td>0.2 to 2.0 ft.</td>
<td>thin-bedded</td>
</tr>
<tr>
<td>Flaky</td>
<td>0.05 to 0.2 ft.</td>
<td>very thin-bedded</td>
</tr>
<tr>
<td>Shaly or platy</td>
<td>0.01 to 0.05 ft.</td>
<td>laminated</td>
</tr>
<tr>
<td>Papery</td>
<td>less than 0.01 ft.</td>
<td>thinly laminated</td>
</tr>
</tbody>
</table>

III FRACTURING

<table>
<thead>
<tr>
<th>Intensity</th>
<th>Size of Pieces in Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very little fractured</td>
<td>Greater than 4.0</td>
</tr>
<tr>
<td>Occasionally fractured</td>
<td>1.0 to 4.0</td>
</tr>
<tr>
<td>Moderately fractured</td>
<td>0.5 to 1.0</td>
</tr>
<tr>
<td>Closely fractured</td>
<td>0.1 to 0.5</td>
</tr>
<tr>
<td>Intensely fractured</td>
<td>0.05 to 0.1</td>
</tr>
<tr>
<td>Crushed</td>
<td>Less than 0.05</td>
</tr>
</tbody>
</table>

IV HARDNESS

1. Soft — Reserved for plastic material alone
2. Low hardness — can be gouged deeply or carved easily with a knife blade
3. Moderately hard — can be readily scratched by a knife blade; scratch leaves a heavy trace of dust and is readily visible after the powder has been blown away.
4. Hard — can be scratched with difficulty; scratch produces little powder and is often faintly visible.
5. Very hard — cannot be scratched with knife blade: leaves a metallic streak.

V STRENGTH

1. Plastic or very low strength
2. Friable — crumbles easily by rubbing with fingers
3. Weak — An unfractured specimen of such material will crumble under light hammer blows.
4. Moderately strong — Specimen will withstand a few heavy hammer blows before breaking.
5. Strong — Specimen will withstand a few heavy ringing hammer blows and will yield with difficulty only dust and small flying fragments.
6. Very strong — Specimen will resist heavy ringing hammer blows and will yield with difficulty only dust and small flying fragments.

VI WEATHERING — The physical and chemical disintegration and decomposition of rocks and minerals by natural processes such as oxidation, reduction, hydration, solution, carbonation, and freezing and thawing.

D. Deep — Moderate to complete mineral decomposition; extensive disintegration; deep and thorough discoloration; many fractures, all extensively coated or filled with oxides, carbonates and/or clay or silt.
M. Moderate — Slight change or partial decomposition of minerals; little disintegration; cementation little to unaffected. Moderate to occasionally intense discoloration. Moderately coated fractures.
L. Little — No megascopic decomposition of minerals; little or no effect on normal cementation. Slight and intermittent, or localized discoloration. Few stains on fracture surfaces.
F. Fresh — Unaffected by weathering agents. No disintegration or discoloration. Fractures usually less numerous than joints.
Hardin Associates, 1965
Test Borings 1 through 4

REFERENCE:

Boring 1

Shear Strength = LBS per Sq Ft

Depth = Feet

Moisture Content = %

Dry Density = LBS per Cu Ft

Elevation = 701

2" Asphalt Concrete
Brown Silty Sand (SM = SW)
firm, moist, with rock fragments

Gray Brown Siltstone
fractured and highly decomposed
firm, moist grading, gray, partially decomposed,
moderately hard grading, very hard

with some clay seams

Water level, 8-31-64

Dark Gray Shale
sheared, with clay seams, moist to wet

Harding Associates
Soil Mechanics Engineers

Equipment: 16" Bucket Auger

Log of Boring

Drilled: 9-16-64
BORING 2

SHEAR STRENGTH = LBS PER SQ FT

MOISTURE CONTENT = %

DRY DENSITY = LBS PER CU FT

ELEVATION = 710

BROWN SILTY CLAY (CL)
- firm, damp, with some highly decomposed siltstone fragments

 - 14.1 116
 - grading, gray brown, with increasing siltstone fragments
 - 14.6 118
 - water seepage at 17.5'
 - 10.3 123
 - GRAY SHALE
 - sheared and decomposed, with abundant clay seams, firm, moist
 - with some hard zones, damp
 - 10.9 124
 - 7.2 133

HARDING ASSOCIATES
SOIL MECHANICS ENGINEERS

LOG OF BORING

EQUIPMENT 16" Bucket Auger

DRILLED 8-31-64
BROWN SANDSTONE & SILTSTONE
thin-bedded, fractured and partially decomposed, firm, dry to damp

with layers of brown decomposed shale

GRAY SHALE
fractured, with clay seams, firm, damp

grading, gray blue, highly sheared with abundant clay seams
lesser sheared, decreasing clay saturated

grading, hard, with calcite veinlets
water seepage at 26°
sheared, with clay seams at 28°
MOTTLED BROWN SILTY CLAY (CL)
firm, damp
grading, moist
grading, with sand and siltstone rock fragments

BROWN SHALE & SILTSTONE
highly decomposed and fractured, with some brown clay seams, moist

GRAY SHALE--fractured, with brown clay seams, moist
water seepage at 18'
grading, hard at 20'

grading, very hard
grading, softer, with clay seams

grading, hard
water seepage at 31'

grading, blue gray, highly sheared, with clay seams, wet

grading, very hard, with calcite veinlets

LOG OF BORING
EQUIPMENT 16" Bucket Auger DRILLED 9-2-64

HARDING ASSOCIATES
SOIL MECHANICS ENGINEERS
D&M 1960
Test Borings 2 through 4

REFERENCE:

LOG OF PITS
LOG OF PITS
D&M 1959
Test Borings 1a through 6

REFERENCE:

Dames & Moore, Foundation Investigation, Proposed Building 70 Addition, Lawrence Radiation Laboratory, Berkeley, California (no reference number), Report dated April 2, 1959
Boring I

CRILLED 3-6-59

ELEVATION 762.5'

LIGHT BROWN CLAY LOAN WITH SOME SMALL ROCK FRAGMENTS & MOSS (FILL)
LIGHT BROWN DECOMPOSED SANDSTONE & SHALES INTERBEDDED
(Grading Less Decomposed)

BLUE-GRAY SANDSTONE, FRACTURED, SOME ALTERED ZONES, SEE PAGE

LOG OF BORING

DAMES & MOORE
SOIL MECHANICS ENGINEERS
LOG OF BORING

BORING 4
DRILLED 3-12-59

ELEVATION 725.5'
BROWN CLAY-LOAM
BROWN CLAY-LOAM WITH ROOTS, LEAVES
(RESIDUAL SOIL)

900 - * - 113 - 11.8% (RESIDUAL)

GRAUISH-BROWN SHALE, FRACTURED, ALTERED
& SHEARED

(GRADING LESS ALTERED)
(GRADING LESS SHEARED)

2380 - 8.6% - 133

DARK GRAY SHALE, SHEARED

(GRADING FRACTURED, LESS SHEARED)

HARD DARK GRAY SHALE, SHEARED &
FRACURED

SHEARING STRENGTH IN LBS. PER SQ. FT.
SOIL CLASSIFICATION CHART AND KEY TO TEST DATA

DIRECT SHEAR - STRAIN CONTROL

TRIAXIAL TESTS

TESTS AT FIELD MOISTURE

TESTS AT ARTIFICIALLY CHANGED MOISTURE

SOIL FRACTION AND PARTICLE SIZE

PER CENT SAND

(PERCENTAGES GIVEN ARE BY DRY WEIGHT)

INDICATES DEPTH AT WHICH UNDISTURBED SAMPLE WAS EXTRACTED
D&M 1948
Test Pits 1 through 4

REFERENCE:

Dames & Moore, Site Plan and Test Pit Logs Building 50, dated July 28, 1948
LOG OF PITS

PIT 1

ELEVATION +752.7'
DARK GRAY CLAY LOAM (Topsoil)
MOTTLED BROWN / GRAY CLAY LOAM
WITH FRAGMENTS OF
DECOMPOSED SANDSTONE

MOISTURE CONTENT
45% - 5.2% - 10.7%

DRY DENSITY IN LBS./CU. FT
1400 - 15.2% - 17.8

BOTTOM OF PIT (DRY)

PIT 2

ELEVATION +757.8'
DARK GRAY CLAY LOAM (Topsoil)
BROWN CLAY
DARK BROWN DECOMPOSED SHALE
WITH CLAYEY-STRATA

BOTTOM OF PIT (DRY)
LOG OF PITS