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Current and predicted energy use
Current use 13 TW

Global Primary Energy Supply by Fuel*:
2002 2030
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Predicted increase in global mean
temperature due to CO, accumulation

Annual average surface air temperature change from HadCM3 1592a
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Predicted effects on rainfall

Change in June-Ju%—August average precipitation
from 1960-1990 to 2070-2100 from HadCM3 1S92a
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Potential of carbon-free energy sources
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~26,000 km? of photovoltaic
devices would meet US energy
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Combustion of biomass provides
carbon neutral energy

Sunlight

CO,

Photosynthesis "Combustion”

Polysaccharides
(Storage)

Work



90,000 TW of energy arrives on the earths
surface from the sun

Water
70.9%

Land
29.0%

Amount of land needed for 13 TW at 1% efficiency
5% of land
650 MHa



Land Usage

Nonarable Other crops
6.9%

34.4%
Forest &
Savannah
30.5%
Cereal
4.6% Pasture & Range

23.7%

AMBIO 23,198 (Total Land surface 13,000 M Ha)



Types of biofuels

» Solid, burned directly
+ Diesel

» Sugar to ethanol

» Cellulose to ethanol
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Overview of Brazil sugarcane

2007-08 harvest 528 MMT
~8 M Ha planted by 2008
~20 B liters ethanol, 2007
~80-120 T/Ha

~6400 L ethanol/Ha

~333 mills, 200 planned

Plantings last 5 y, cut one per
year
Large mill

- 22,000 tons/day

- Most Intensive
- 1500 truck loads/day Source: [BGE Brazi



US Biofuel Production has Expanded Rapidly

AS OF: March 2006

’ In operation
’ Under constructiol
A Proposed




Some plants accumulate oil

(B) Triacylglycerol




Biodiesel has been expanding rapidly

Figure 2. World Biodiesel Production, 1991-2005
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Limited potential of biodiesel

(data from congressional research office)
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65 biodiesel companies in operation, 50 in construction 2006



Use of algae could enable saline cultivation

Greenfuel bioreactor

http://news.com.com/Photos+Betting+big+on+biodiesel/2009-1043_3-5714336.html|?tag=st.prev



How Much Ethanol Could the Municipal Solid
Waste from a City With 1 Million People Produce?

The average person in the United States generates approximately 1.8 kilograms
of municipal solid waste (MSW) every day. Of this, typically about 75 percent is
predominantly cellulosic organic material, including waste paper, wood wastes,
cardboard, and waste food scraps. Thus, a city with 1 million people produces
around 1,800 tonnes of MSW in total, or about 1,300 tonnes per day of organic
material. Using technology that could convert organic waste to ethanol, roughly
330 liters of ethanol could be produced per tonne of organic waste. Thus,
organic waste from a city with 1 million people would be enough feedstock to
produce about 150 million liters per year. This is enough fuel to meet the needs
of more than 58,000 people in the United States; 360,000 people in France; or
nearly 2.6 million people in China at current rates of per capita fuel use.

Worldwatch, 2006



Cellulosic fuels are expected to become the
dominant source of biofuels
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US Biomass inventory = 1.3 billion tons

Whea:r straw

26 Bgals ~ Colr'gn stover 6 1%
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Perennial crops 2.9%

35.2% Forest

12.8%

From: Billion ton Vision, DOE & USDA 2005



Effect of 50% stover removal on corn
grain yields in eastern NE.
(120kg N/ha)
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Potential bioenergy crops tested in the US

English name

Latin name

Photo- synthetic

Yields reported

pathway [t DM ha—' a—!]2

Crested wheatgrass Agropyron desertorum Cs 16.3

(Fisch ex Link) Schult.
Redtop Agrostis gigantea Roth Cs Not available
Big bluestem Andropogon gerardii Vitman Cy 6.8-11.9
Smooth bromegrass Bromus inermis Leyss. Cs 3.3-6.7
Bermudagrass Cynodon dactylon L. Cy 1.0-1.9
Intermediate wheatgrass Elytrigia intermedia [Host] Nevski Cs Not available
Tall wheatgrass Elytrigia pontica [Podp.] Holub Cs Not available
Weeping lovegrass Eragrostis curvula (Schrad.) Nees Cy4 6.8-13.7
Tall Fescue Festuca arundinacea Schreb. Cs 3.6-11.0
Switchgrass Panicum virgatum L. Cy4 0.9-34.6
Western wheatgrass Pascopyrum smithii (Rydb.) A. Love Cs Not available
Bahiagrass Paspalum notatum Flugge Cy Not available
Napiergrass (elephant grass) Pennisetum purpureum Schum Cy 22.0-31.0
Reed canary grass Phalaris arundinacea L. Cs 1.6—-12.2
Timothy Phleum pratense L. G 1.6-6.0
Energy cane Saccharum spp. Cs 32.5
Johnsongrass Sorghum halepense (L.) Pers. Cq 14.0-17.0
Eastern gammagrass Tripsacum dactyloides (L.) L. Cy 3.1-8.0

it = Mg.

From Lewandowski et al., Biomass & Bioenergy 25,335



High yield decreases transportation
and land costs

Agriculture and
Forestry Residues
2 tons/acre
Wild Grasses Energy (rops
4tons/acre N\ 5 tons/acre

/ Energy Crops
12.5 tons/acre

—— Energy Crops

50 miles = $$$ 20 tons/acre

- At 2 tons of biomass per acre, a 5,000-

ton/day biorefinery would require a
radius of about 50 miles to support it.

« A 20-ton dedicated energy crop would
shrink that area by 90%

500,000 gal/day scenario

Richard Hamilton, Ceres

HARVEST & TRANSPORTATION COST VS. YIELD DENSITY
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>2% yield is feasible

Yield of 26.5 tons/acre observed by Young & colleagues
in Illinois, without irrigation

Courtesy of Steve Long et al




Perennials have more photosynthesis

Miscanthus x
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Locations of European Miscanthus
Trials

. Hyperion
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15. SORGHAL
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Figure 4.6. Geographical distribution of the trials in the European Miscanthus Productiity Network. See
Preface for key to acronyms

From: Clifton-Brown et al in: Jones and Walsh (eds) Miscanthus for Energy and Fibre, 2001
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Yield comparison of two energy crops
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B Switchgrass | |
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Heaton and Long, submitted



Soil carbon increases in perennial crops with
all aboveground biomass removed
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Soil CO, sequestration (Mg ha™ yr'!)

Number of plant species

Tilman, Hill & Lehman Science 314,1598



Perennials have little or no erosion

Corn

Soybeans

Perennial herbaceous

Short rotation woodl

0 10 20 30 40 50

Tonnes/HA/y of soil loss

From Oliveira et al in: Jones and Walsh (eds) Miscanthus for Energy and Fibre, 2001



Harvesting Miscanthus
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Ecological niches in Miscanthus vs corn in
Germany

B Miscanthus
Mammals =ICorm

Birds

Beetles

Spiders

Number of species

From Oliveira et al in: Jones and Walsh (eds) Miscanthus for Energy and Fibre, 2001

More extensive analysis in Semere & Slater (2007) Biomass & Energy 31,30



Energy crops may not compete directly with

food crops
(yield per HA for Miscanthus, Corn, Soybean)

Corn Yield (bu/ha) Soybean Yield (bu/ha)
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Miscanthu Corn Soybean

Madhu Khanna, University of Illinois, Urbana



Annual precipitation

Annual Average Precipitation

United States of America
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Limiting factors for global NPP
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Steps in cellulosic ethanol production

Enzyme
production

_ | Enzymatic _ | Fermentation of
_ | hydrolysis = | cellulosic sugars

I—_+ 1

Size reduction

Pretreatment 9

| Detoxification and | _ | Solid and liquid

r t
icat . Produc
neutralization separation

recovery

Fermentation of
#-| hemicellulosic
sugars
Residue
processing

Coproducts

From: Breaking the Biological Barriers to Cellulosic Ethanol



The challenge is efficient conversion

» Burning switchgrass (10
t/ha) yields 14.6-fold
more energy than input
to produce*

Other

Steam Transport

Biomass

- But, converting Grinding
switchgrass to ethanol
calculated to consume Electricity
45% more energy than
produced Energy consumption

*Pimentel & Patzek, Nat Res Res 14,65 (2005)



Plants are mostly composed of sugars

/ 1, 4-glucan chains
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Lignin occludes polysaccharides

Cellulose
Hemicellulose

Lignin

John Ralph, U Wisconsin



Lignin biosynthesis
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Possible routes to improved catalysts

« Explore the enzyme systems
used by termites (and
ruminants) for digesting
lignocellulosic material

« Compost heaps and forest
floors are poorly explored

« Invitro protein engineering of
promising enzymes
« Develop synthetic organic

catalysts (for polysaccharides
and lignin)




Enzymatic hydrolysis of cellulose is slow

Skopec, Himmel, Matthews, Brady Protein Engineering 16, 1005



Dissolution of cellulose in an ionic liquid

(novel pretreatment methods may create fundamental changes)

Untreated
H-C
3 MH#@NM cl-
=/
1-Butyl-3-methylimidazolium chloride
Treated

Swatloski, Spear, Holbrey, Rogers J. Am. Chem. Soc., 124 (18), 4974 -4975, 2002



Fermentation of all sugars is essential

1, Hxk2

Glk1
Gépd
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Jeffries & Shi Adv Bioch Eng 65,118
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Steps in cellulosic ethanol production

Enzyme
production

_ | Enzymatic _ | Fermentation of
_ | hydrolysis = | cellulosic sugars

I—_+ 1

Size reduction

Pretreatment 9

| Detoxification and | _ | Solid and liquid

r t
icat . Produc
neutralization separation

recovery

Fermentation of
#-| hemicellulosic
sugars
Residue
processing

Coproducts

From: Breaking the Biological Barriers to Cellulosic Ethanol



Nature offers many alternatives to
ethanol

* Plants, algae, and bacteria
synthesize alkanes,
alcohols, waxes

0]
|
\/\M»/\/\/\\z/\\,}‘ OH

* Production of hydrophobic -ty acid G20
compounds would reduce l 0
toxicity and decrease the V\/\‘?TM\AH
energy required for J

dehydration

n-Alkane (Cop-1)



Conversion of sugar to alkanes

Cg-sugar OH
OH o 8H, 6H,0
OH -
; G © dehydration/ C12 alkane
HO OH hydrogenation
'/J dehydration j‘ hydrogenation
H
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Huber et al., (2005) Science 308,1446



The “hydrogen economy”

Enhanced oij
recovery W o
permanent COs;

storage in rock

formation

Justin Adams, BP




1000 M

The Sleipner Experiment

1 million tons/y; capacity 600 B tons
7000 such sites needed

www.agiweb.org/geotimes



Summary of priorities

+ Develop energy crops and associated
agronomic practices

+ Identify or create more active catalysts
for conversion of biomass to sugars

+ Develop industrial microorganisms that
ferment all sugars

+ Develop new types of microorganisms that
produce and secrete hydrophobic
compounds



The Energy Bioscience Institute

* Partnership between UCB, UI, LBL
» BP has committed $500M over 10 years

- Goals include elimination of bottlenecks

to biofuels, development of improved
biotechnologies for fuel production, and
education of scientists and engineers
across the relevant disciplines



http://www.admin.uiuc.edu/logo/
http://www.lbl.gov/
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Federal Research Budget 2006
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A vision of the Future
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